Lixiang Xu, Yusheng Liu, Tong Xu, Enhong Chen, Y. Tang
{"title":"为推荐而进行的图增强对比学习","authors":"Lixiang Xu, Yusheng Liu, Tong Xu, Enhong Chen, Y. Tang","doi":"10.1145/3677377","DOIUrl":null,"url":null,"abstract":"\n The application of contrastive learning (CL) to collaborative filtering (CF) in recommender systems has achieved remarkable success. CL-based recommendation models mainly focus on creating multiple augmented views by employing different graph augmentation methods and utilizing these views for self-supervised learning. However, current CL methods for recommender systems usually struggle to fully address the problem of noisy data. To address this problem, we propose the\n G\n raph\n A\n ugmentation\n E\n mpowered\n C\n ontrastive\n L\n earning\n (GAECL)\n for recommendation framework, which uses graph augmentation based on topological and semantic dual adaptation and global co-modeling via structural optimization to co-create contrasting views for better augmentation of the CF paradigm. Specifically, we strictly filter out unimportant topologies by reconstructing the adjacency matrix and mask unimportant attributes in nodes according to the PageRank centrality principle to generate an augmented view that filters out noisy data. Additionally, GAECL achieves global collaborative modeling through structural optimization and generates another augmented view based on the PageRank centrality principle. This helps to filter the noisy data while preserving the original semantics of the data for more effective data augmentation. Extensive experiments are conducted on five datasets to demonstrate the superior performance of our model over various recommendation models.\n","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"63 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Augmentation Empowered Contrastive Learning for Recommendation\",\"authors\":\"Lixiang Xu, Yusheng Liu, Tong Xu, Enhong Chen, Y. Tang\",\"doi\":\"10.1145/3677377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The application of contrastive learning (CL) to collaborative filtering (CF) in recommender systems has achieved remarkable success. CL-based recommendation models mainly focus on creating multiple augmented views by employing different graph augmentation methods and utilizing these views for self-supervised learning. However, current CL methods for recommender systems usually struggle to fully address the problem of noisy data. To address this problem, we propose the\\n G\\n raph\\n A\\n ugmentation\\n E\\n mpowered\\n C\\n ontrastive\\n L\\n earning\\n (GAECL)\\n for recommendation framework, which uses graph augmentation based on topological and semantic dual adaptation and global co-modeling via structural optimization to co-create contrasting views for better augmentation of the CF paradigm. Specifically, we strictly filter out unimportant topologies by reconstructing the adjacency matrix and mask unimportant attributes in nodes according to the PageRank centrality principle to generate an augmented view that filters out noisy data. Additionally, GAECL achieves global collaborative modeling through structural optimization and generates another augmented view based on the PageRank centrality principle. This helps to filter the noisy data while preserving the original semantics of the data for more effective data augmentation. Extensive experiments are conducted on five datasets to demonstrate the superior performance of our model over various recommendation models.\\n\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"63 6\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3677377\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3677377","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Graph Augmentation Empowered Contrastive Learning for Recommendation
The application of contrastive learning (CL) to collaborative filtering (CF) in recommender systems has achieved remarkable success. CL-based recommendation models mainly focus on creating multiple augmented views by employing different graph augmentation methods and utilizing these views for self-supervised learning. However, current CL methods for recommender systems usually struggle to fully address the problem of noisy data. To address this problem, we propose the
G
raph
A
ugmentation
E
mpowered
C
ontrastive
L
earning
(GAECL)
for recommendation framework, which uses graph augmentation based on topological and semantic dual adaptation and global co-modeling via structural optimization to co-create contrasting views for better augmentation of the CF paradigm. Specifically, we strictly filter out unimportant topologies by reconstructing the adjacency matrix and mask unimportant attributes in nodes according to the PageRank centrality principle to generate an augmented view that filters out noisy data. Additionally, GAECL achieves global collaborative modeling through structural optimization and generates another augmented view based on the PageRank centrality principle. This helps to filter the noisy data while preserving the original semantics of the data for more effective data augmentation. Extensive experiments are conducted on five datasets to demonstrate the superior performance of our model over various recommendation models.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.