木质素水凝胶作为基于悬浮栅极场效应晶体管的新型微型化学传感平台的应用案例

Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph
{"title":"木质素水凝胶作为基于悬浮栅极场效应晶体管的新型微型化学传感平台的应用案例","authors":"Marieke Stapf,&nbsp;Vladislav Komenko,&nbsp;Johanna Phuong Nong,&nbsp;Jörg Adam,&nbsp;Franz Selbmann,&nbsp;Andrey Kravchenko,&nbsp;Martina Bremer,&nbsp;Steffen Fischer,&nbsp;Klaus Knobloch,&nbsp;Yvonne Joseph","doi":"10.1002/adsr.202400040","DOIUrl":null,"url":null,"abstract":"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040","citationCount":"0","resultStr":"{\"title\":\"Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors\",\"authors\":\"Marieke Stapf,&nbsp;Vladislav Komenko,&nbsp;Johanna Phuong Nong,&nbsp;Jörg Adam,&nbsp;Franz Selbmann,&nbsp;Andrey Kravchenko,&nbsp;Martina Bremer,&nbsp;Steffen Fischer,&nbsp;Klaus Knobloch,&nbsp;Yvonne Joseph\",\"doi\":\"10.1002/adsr.202400040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>\",\"PeriodicalId\":100037,\"journal\":{\"name\":\"Advanced Sensor Research\",\"volume\":\"3 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sensor Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sensor Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsr.202400040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于微机电系统(MEMS)的气体传感器具有多种优势,如适用于多种潜在敏感材料和分析物、易于微型化和集成、灵敏度高且成本低。本文介绍了一种利用悬浮栅场效应晶体管 (SGFET) 传感器的新型 MEMS 传感器平台。在这种方法中,SGFET 的柔性栅极膜上涂有一种敏感材料,这种材料具有响应性膨胀行为。在概念验证中,牛皮纸木质素水凝胶被选为湿度传感的生物可再生材料。采用精密点胶技术将牛皮纸木质素水凝胶沉积在 SGFET 上。传感器测量结果表明,在 5000 ppm 水蒸汽的作用下,传感器的输出电流会发生高达 9% 的可逆偏移。结果成功证明了这种新型传感平台的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors

Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors

Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信