{"title":"通过基于变换器的序列建模实现知识增强型对话推荐","authors":"Jie Zou, Aixin Sun, Cheng Long, E. Kanoulas","doi":"10.1145/3677376","DOIUrl":null,"url":null,"abstract":"In Conversational Recommender Systems (CRSs), conversations usually involve a set of items and item-related entities or attributes, e.g., director is a related entity of a movie. These items and item-related entities are often mentioned along the development of a dialog, leading to potential sequential dependencies among them. However, most of existing CRSs neglect these potential sequential dependencies. In this paper, we first propose a Transformer-based sequential conversational recommendation method, named TSCR, to model the sequential dependencies in the conversations to improve CRS. In TSCR, we represent conversations by items and the item-related entities, and construct user sequences to discover user preferences by considering both the mentioned items and item-related entities. Based on the constructed sequences, we deploy a Cloze task to predict the recommended items along a sequence. Meanwhile, in certain domains, knowledge graphs formed by the items and their related entities are readily available, which provide various different kinds of associations among them. Given that TSCR does not benefit from such knowledge graphs, we then propose a knowledge graph enhanced version of TSCR, called TSCRKG. In specific, we leverage the knowledge graph to offline initialize our model TSCRKG, and augment the user sequence of conversations (i.e., sequence of the mentioned items and item-related entities in the conversation) with multi-hop paths in the knowledge graph. Experimental results demonstrate that our TSCR model significantly outperforms state-of-the-art baselines, and the enhanced version TSCRKG further improves recommendation performance on top of TSCR.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"91 8","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge-Enhanced Conversational Recommendation via Transformer-based Sequential Modelling\",\"authors\":\"Jie Zou, Aixin Sun, Cheng Long, E. Kanoulas\",\"doi\":\"10.1145/3677376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Conversational Recommender Systems (CRSs), conversations usually involve a set of items and item-related entities or attributes, e.g., director is a related entity of a movie. These items and item-related entities are often mentioned along the development of a dialog, leading to potential sequential dependencies among them. However, most of existing CRSs neglect these potential sequential dependencies. In this paper, we first propose a Transformer-based sequential conversational recommendation method, named TSCR, to model the sequential dependencies in the conversations to improve CRS. In TSCR, we represent conversations by items and the item-related entities, and construct user sequences to discover user preferences by considering both the mentioned items and item-related entities. Based on the constructed sequences, we deploy a Cloze task to predict the recommended items along a sequence. Meanwhile, in certain domains, knowledge graphs formed by the items and their related entities are readily available, which provide various different kinds of associations among them. Given that TSCR does not benefit from such knowledge graphs, we then propose a knowledge graph enhanced version of TSCR, called TSCRKG. In specific, we leverage the knowledge graph to offline initialize our model TSCRKG, and augment the user sequence of conversations (i.e., sequence of the mentioned items and item-related entities in the conversation) with multi-hop paths in the knowledge graph. Experimental results demonstrate that our TSCR model significantly outperforms state-of-the-art baselines, and the enhanced version TSCRKG further improves recommendation performance on top of TSCR.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"91 8\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3677376\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3677376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Knowledge-Enhanced Conversational Recommendation via Transformer-based Sequential Modelling
In Conversational Recommender Systems (CRSs), conversations usually involve a set of items and item-related entities or attributes, e.g., director is a related entity of a movie. These items and item-related entities are often mentioned along the development of a dialog, leading to potential sequential dependencies among them. However, most of existing CRSs neglect these potential sequential dependencies. In this paper, we first propose a Transformer-based sequential conversational recommendation method, named TSCR, to model the sequential dependencies in the conversations to improve CRS. In TSCR, we represent conversations by items and the item-related entities, and construct user sequences to discover user preferences by considering both the mentioned items and item-related entities. Based on the constructed sequences, we deploy a Cloze task to predict the recommended items along a sequence. Meanwhile, in certain domains, knowledge graphs formed by the items and their related entities are readily available, which provide various different kinds of associations among them. Given that TSCR does not benefit from such knowledge graphs, we then propose a knowledge graph enhanced version of TSCR, called TSCRKG. In specific, we leverage the knowledge graph to offline initialize our model TSCRKG, and augment the user sequence of conversations (i.e., sequence of the mentioned items and item-related entities in the conversation) with multi-hop paths in the knowledge graph. Experimental results demonstrate that our TSCR model significantly outperforms state-of-the-art baselines, and the enhanced version TSCRKG further improves recommendation performance on top of TSCR.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.