哈达玛分式微分方程的非局部积分微分方程分析:RLC 模型背景下的存在性、唯一性和稳定性

Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi
{"title":"哈达玛分式微分方程的非局部积分微分方程分析:RLC 模型背景下的存在性、唯一性和稳定性","authors":"Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi","doi":"10.3390/fractalfract8070409","DOIUrl":null,"url":null,"abstract":"In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Non-Local Integro-Differential Equations with Hadamard Fractional Derivatives: Existence, Uniqueness, and Stability in the Context of RLC Models\",\"authors\":\"Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi\",\"doi\":\"10.3390/fractalfract8070409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们采用哈达玛分数导数微分方程,重点分析了 RLC 模型的稳定性。我们利用巴纳赫收缩原理和 Schaefer 定点定理证明了解的存在性和唯一性。为了便于得出关键结论,我们将问题转换为等价的积分微分方程。此外,我们还探讨了乌兰稳定性结论的几个版本。我们提供了两个数值示例来说明我们主要结果的应用。我们还发现,对 Hadamard 分数导数的修改会导致非对称结果。研究最后通过一个应用实例证明了从 Schaefer 定点定理中得出的存在性结果。这些发现是对该主题文献的新贡献,极大地促进了我们的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Non-Local Integro-Differential Equations with Hadamard Fractional Derivatives: Existence, Uniqueness, and Stability in the Context of RLC Models
In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信