Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi
{"title":"哈达玛分式微分方程的非局部积分微分方程分析:RLC 模型背景下的存在性、唯一性和稳定性","authors":"Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi","doi":"10.3390/fractalfract8070409","DOIUrl":null,"url":null,"abstract":"In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.","PeriodicalId":510138,"journal":{"name":"Fractal and Fractional","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Non-Local Integro-Differential Equations with Hadamard Fractional Derivatives: Existence, Uniqueness, and Stability in the Context of RLC Models\",\"authors\":\"Manigandan Murugesan, Saravanan Shanmugam, Mohamed Rhaima, Ragul Ravi\",\"doi\":\"10.3390/fractalfract8070409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.\",\"PeriodicalId\":510138,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract8070409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract8070409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Non-Local Integro-Differential Equations with Hadamard Fractional Derivatives: Existence, Uniqueness, and Stability in the Context of RLC Models
In this study, we focus on the stability analysis of the RLC model by employing differential equations with Hadamard fractional derivatives. We prove the existence and uniqueness of solutions using Banach’s contraction principle and Schaefer’s fixed point theorem. To facilitate our key conclusions, we convert the problem into an equivalent integro-differential equation. Additionally, we explore several versions of Ulam’s stability findings. Two numerical examples are provided to illustrate the applications of our main results. We also observe that modifications to the Hadamard fractional derivative lead to asymmetric outcomes. The study concludes with an applied example demonstrating the existence results derived from Schaefer’s fixed point theorem. These findings represent novel contributions to the literature on this topic, significantly advancing our understanding.