西高止山脉海拔梯度森林和植树造林的碳储量:植物多样性会影响森林碳储量吗?

B. Mohan Kumar, D. Balasubramanian
{"title":"西高止山脉海拔梯度森林和植树造林的碳储量:植物多样性会影响森林碳储量吗?","authors":"B. Mohan Kumar,&nbsp;D. Balasubramanian","doi":"10.1007/s44177-024-00071-x","DOIUrl":null,"url":null,"abstract":"<div><p>Biomass carbon (C) stocks and species richness and diversity are interlinked, and they co-vary along an elevational gradient. To test these hypotheses of inter-connectiveness and covariation in the Western Ghats (peninsular India) context, we enumerated 16 moist forest plots as well as 18 rubber (<i>Hevea brasiliensis</i>) and coconut (<i>Cocos nucifera</i>) plantations each. Our main objectives were to assess the aboveground biomass C (AGB-C) stocks and the association between plant diversity and forest AGB-C stocks along an elevation gradient. Species-specific allometric equations and Ordinary Kriging interpolation were used to predict and map AGB-C and species diversity. AGB-C stocks varied significantly among forest (381.69 ± 25.87 Mg ha<sup>–1</sup>), rubber (73.92 ± 7.76 Mg ha<sup>–1</sup>), and coconut (21.19 ± 1.23 Mg ha<sup>–1</sup>) stands. Forest AGB-C stocks also decreased linearly with increasing elevation. Although rubber and coconut AGB-C declined with elevation, the differences were not significant. The richness and diversity of arboreal species were higher in mid-elevation forests compared to low/high-elevation sites (unimodal pattern). With Simpson’s diversity index ranging from 0.695 to 0.865, Shannon index of 1.445–2.231, and Equitability of 0.883–0.994, our study sites exhibited moderate to high species diversity and encompassed 26 IUCN Red-listed species. Diversity and AGB-C were significantly correlated, indicating that the results support the hypothesis on inter-connectiveness. Overall, the forests at low and mid-elevations showed greater potential for C sequestration and biodiversity conservation, implying the need for adaptive management (designing actions) of these forests to mitigate the impending global climate change and conserve biodiversity.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":100099,"journal":{"name":"Anthropocene Science","volume":"3 1-2","pages":"63 - 80"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44177-024-00071-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Carbon Stocks of Forests and Tree Plantations Along an Elevational Gradient in the Western Ghats: Does Plant Diversity Impact Forest Carbon Stocks?\",\"authors\":\"B. Mohan Kumar,&nbsp;D. Balasubramanian\",\"doi\":\"10.1007/s44177-024-00071-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomass carbon (C) stocks and species richness and diversity are interlinked, and they co-vary along an elevational gradient. To test these hypotheses of inter-connectiveness and covariation in the Western Ghats (peninsular India) context, we enumerated 16 moist forest plots as well as 18 rubber (<i>Hevea brasiliensis</i>) and coconut (<i>Cocos nucifera</i>) plantations each. Our main objectives were to assess the aboveground biomass C (AGB-C) stocks and the association between plant diversity and forest AGB-C stocks along an elevation gradient. Species-specific allometric equations and Ordinary Kriging interpolation were used to predict and map AGB-C and species diversity. AGB-C stocks varied significantly among forest (381.69 ± 25.87 Mg ha<sup>–1</sup>), rubber (73.92 ± 7.76 Mg ha<sup>–1</sup>), and coconut (21.19 ± 1.23 Mg ha<sup>–1</sup>) stands. Forest AGB-C stocks also decreased linearly with increasing elevation. Although rubber and coconut AGB-C declined with elevation, the differences were not significant. The richness and diversity of arboreal species were higher in mid-elevation forests compared to low/high-elevation sites (unimodal pattern). With Simpson’s diversity index ranging from 0.695 to 0.865, Shannon index of 1.445–2.231, and Equitability of 0.883–0.994, our study sites exhibited moderate to high species diversity and encompassed 26 IUCN Red-listed species. Diversity and AGB-C were significantly correlated, indicating that the results support the hypothesis on inter-connectiveness. Overall, the forests at low and mid-elevations showed greater potential for C sequestration and biodiversity conservation, implying the need for adaptive management (designing actions) of these forests to mitigate the impending global climate change and conserve biodiversity.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":100099,\"journal\":{\"name\":\"Anthropocene Science\",\"volume\":\"3 1-2\",\"pages\":\"63 - 80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s44177-024-00071-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anthropocene Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s44177-024-00071-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anthropocene Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44177-024-00071-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物量碳(C)储量与物种丰富度和多样性相互关联,并沿海拔梯度共同变化。为了验证西高止山脉(印度半岛)的这些相互关联性和共变性假设,我们列举了 16 块湿润森林地块以及 18 个橡胶(Hevea brasiliensis)和椰子(Cocos nucifera)种植园。我们的主要目标是沿海拔梯度评估地上生物量 C(AGB-C)储量以及植物多样性与森林 AGB-C 储量之间的关联。我们采用了物种特定的异速方程和普通克里金插值法来预测和绘制 AGB-C 和物种多样性图。森林(381.69 ± 25.87 兆克/公顷-1)、橡胶(73.92 ± 7.76 兆克/公顷-1)和椰子(21.19 ± 1.23 兆克/公顷-1)之间的 AGB-C 储量差异显著。森林 AGB-C 储量也随着海拔的升高呈线性下降。虽然橡胶和椰子的 AGB-C 随海拔升高而减少,但差异并不显著。与低海拔/高海拔地区相比,中海拔地区森林树栖物种的丰富度和多样性更高(单峰模式)。辛普森多样性指数(Simpson's diversity index)为 0.695 至 0.865,香农指数(Shannon index)为 1.445 至 2.231,等差数列(Equitability)为 0.883 至 0.994。多样性与 AGB-C 显著相关,表明研究结果支持相互关联性假设。总体而言,中低纬度森林在固碳和保护生物多样性方面表现出更大的潜力,这意味着需要对这些森林进行适应性管理(设计行动),以减缓即将到来的全球气候变化并保护生物多样性。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Carbon Stocks of Forests and Tree Plantations Along an Elevational Gradient in the Western Ghats: Does Plant Diversity Impact Forest Carbon Stocks?

Biomass carbon (C) stocks and species richness and diversity are interlinked, and they co-vary along an elevational gradient. To test these hypotheses of inter-connectiveness and covariation in the Western Ghats (peninsular India) context, we enumerated 16 moist forest plots as well as 18 rubber (Hevea brasiliensis) and coconut (Cocos nucifera) plantations each. Our main objectives were to assess the aboveground biomass C (AGB-C) stocks and the association between plant diversity and forest AGB-C stocks along an elevation gradient. Species-specific allometric equations and Ordinary Kriging interpolation were used to predict and map AGB-C and species diversity. AGB-C stocks varied significantly among forest (381.69 ± 25.87 Mg ha–1), rubber (73.92 ± 7.76 Mg ha–1), and coconut (21.19 ± 1.23 Mg ha–1) stands. Forest AGB-C stocks also decreased linearly with increasing elevation. Although rubber and coconut AGB-C declined with elevation, the differences were not significant. The richness and diversity of arboreal species were higher in mid-elevation forests compared to low/high-elevation sites (unimodal pattern). With Simpson’s diversity index ranging from 0.695 to 0.865, Shannon index of 1.445–2.231, and Equitability of 0.883–0.994, our study sites exhibited moderate to high species diversity and encompassed 26 IUCN Red-listed species. Diversity and AGB-C were significantly correlated, indicating that the results support the hypothesis on inter-connectiveness. Overall, the forests at low and mid-elevations showed greater potential for C sequestration and biodiversity conservation, implying the need for adaptive management (designing actions) of these forests to mitigate the impending global climate change and conserve biodiversity.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信