{"title":"质子交换膜燃料电池供气子系统的非线性主动干扰抑制反馈控制方法","authors":"Jiaming Zhou, Weixiang Ding, Jinming Zhang, Fengyan Yi, Zhiming Zhang, Guangping Wu, Caizhi Zhang","doi":"10.3390/act13070268","DOIUrl":null,"url":null,"abstract":"The control strategy of the gas supply subsystem is very important to ensure the performance and stability of the fuel cell system. However, due to the inherent nonlinear characteristics of the fuel cell gas supply subsystem, the traditional control strategy is mainly based on proportional integral (PI) control, which has the disadvantages of large limitation, large error, limited immunity, and inconsistent control performance, which seriously affects its effectiveness. In order to overcome these challenges, this paper proposes an optimal control method for air supply subsystems based on nonlinear active disturbance rejection control (ADRC). Firstly, a seven-order fuel cell system model is established, and then, the nonlinear ADRC and traditional PI control strategies are compared and analyzed. Finally, the two strategies are simulated and compared. The validation results indicate that the integral absolute error (IAE) measure of PI control is 0.502, the integral square error (ISE) measure is 0.1382, and the total variation (TV) measure is 399.1248. Compared with the PI control, the IAE and ISE indexes of ADRC were reduced by 61.31% and 58.03%, respectively. ADRC is superior to PI control strategy in all aspects and realizes the efficient adjustment of the system under different working conditions. ADRC is more suitable for the nonlinear characteristics of the gas supply system and is more suitable for the oxygen excess ratio (OER).","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Nonlinear Active Disturbance Rejection Feedback Control Method for Proton Exchange Membrane Fuel Cell Air Supply Subsystems\",\"authors\":\"Jiaming Zhou, Weixiang Ding, Jinming Zhang, Fengyan Yi, Zhiming Zhang, Guangping Wu, Caizhi Zhang\",\"doi\":\"10.3390/act13070268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control strategy of the gas supply subsystem is very important to ensure the performance and stability of the fuel cell system. However, due to the inherent nonlinear characteristics of the fuel cell gas supply subsystem, the traditional control strategy is mainly based on proportional integral (PI) control, which has the disadvantages of large limitation, large error, limited immunity, and inconsistent control performance, which seriously affects its effectiveness. In order to overcome these challenges, this paper proposes an optimal control method for air supply subsystems based on nonlinear active disturbance rejection control (ADRC). Firstly, a seven-order fuel cell system model is established, and then, the nonlinear ADRC and traditional PI control strategies are compared and analyzed. Finally, the two strategies are simulated and compared. The validation results indicate that the integral absolute error (IAE) measure of PI control is 0.502, the integral square error (ISE) measure is 0.1382, and the total variation (TV) measure is 399.1248. Compared with the PI control, the IAE and ISE indexes of ADRC were reduced by 61.31% and 58.03%, respectively. ADRC is superior to PI control strategy in all aspects and realizes the efficient adjustment of the system under different working conditions. ADRC is more suitable for the nonlinear characteristics of the gas supply system and is more suitable for the oxygen excess ratio (OER).\",\"PeriodicalId\":48584,\"journal\":{\"name\":\"Actuators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Actuators\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/act13070268\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13070268","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
供气子系统的控制策略对于确保燃料电池系统的性能和稳定性非常重要。然而,由于燃料电池供气子系统固有的非线性特性,传统的控制策略主要基于比例积分(PI)控制,存在限制大、误差大、抗干扰能力有限、控制性能不稳定等缺点,严重影响了其有效性。为了克服这些难题,本文提出了一种基于非线性主动干扰抑制控制(ADRC)的送风子系统优化控制方法。首先,建立了七阶燃料电池系统模型,然后对非线性 ADRC 和传统 PI 控制策略进行了比较和分析。最后,对两种策略进行了仿真和比较。验证结果表明,PI 控制的积分绝对误差(IAE)测量值为 0.502,积分平方误差(ISE)测量值为 0.1382,总变化(TV)测量值为 399.1248。与 PI 控制相比,ADRC 的 IAE 和 ISE 指标分别降低了 61.31% 和 58.03%。ADRC 在各方面均优于 PI 控制策略,能在不同工况下实现系统的高效调节。ADRC 更适合供气系统的非线性特性,更适合氧气过剩率(OER)。
A Nonlinear Active Disturbance Rejection Feedback Control Method for Proton Exchange Membrane Fuel Cell Air Supply Subsystems
The control strategy of the gas supply subsystem is very important to ensure the performance and stability of the fuel cell system. However, due to the inherent nonlinear characteristics of the fuel cell gas supply subsystem, the traditional control strategy is mainly based on proportional integral (PI) control, which has the disadvantages of large limitation, large error, limited immunity, and inconsistent control performance, which seriously affects its effectiveness. In order to overcome these challenges, this paper proposes an optimal control method for air supply subsystems based on nonlinear active disturbance rejection control (ADRC). Firstly, a seven-order fuel cell system model is established, and then, the nonlinear ADRC and traditional PI control strategies are compared and analyzed. Finally, the two strategies are simulated and compared. The validation results indicate that the integral absolute error (IAE) measure of PI control is 0.502, the integral square error (ISE) measure is 0.1382, and the total variation (TV) measure is 399.1248. Compared with the PI control, the IAE and ISE indexes of ADRC were reduced by 61.31% and 58.03%, respectively. ADRC is superior to PI control strategy in all aspects and realizes the efficient adjustment of the system under different working conditions. ADRC is more suitable for the nonlinear characteristics of the gas supply system and is more suitable for the oxygen excess ratio (OER).
期刊介绍:
Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.