Zhenhao Jing, Y. Neumeier, J. Prasad, Darrell K. James
{"title":"主动能源管理促进发动机瞬态运行","authors":"Zhenhao Jing, Y. Neumeier, J. Prasad, Darrell K. James","doi":"10.2514/1.b39242","DOIUrl":null,"url":null,"abstract":"Combat aircraft often require the engine to accelerate as fast as possible in response to the demand of maneuvering. The engine acceleration rate, however, is limited by the compressor surge constraint, which prevents more fuel addition that, otherwise, could provide for higher net shaft torque, and thus, faster acceleration. This paper examines the idea of using the electric starter/generator (ES/G) system to provide additional net shaft torque during this critical phase of acceleration. The idea is examined by simulations using a quasi-one-dimensional dynamic compressor flow model coupled with a lumped combustor–turbine model. A notional single-spool turbojet with a low overall pressure ratio is modeled and simulated. Simulation results suggest that an ES/G, when used as an electric-assist motor during acceleration, can help the engine to accelerate roughly 11, 48, and 70% faster compared to the case without ES/G participation, by using electric power roughly equivalent to 0.1, 1, and 3% of full-speed fuel combustion power, respectively. Furthermore, the respective increase in the acceleration rate leads to an additional 19, 80, and 113% of propulsion impulse, respectively (i.e., thrust integrated over time), during the first 5 s following the acceleration command.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"52 15","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Active Energy Management for Enhanced Engine Transient Operations\",\"authors\":\"Zhenhao Jing, Y. Neumeier, J. Prasad, Darrell K. James\",\"doi\":\"10.2514/1.b39242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combat aircraft often require the engine to accelerate as fast as possible in response to the demand of maneuvering. The engine acceleration rate, however, is limited by the compressor surge constraint, which prevents more fuel addition that, otherwise, could provide for higher net shaft torque, and thus, faster acceleration. This paper examines the idea of using the electric starter/generator (ES/G) system to provide additional net shaft torque during this critical phase of acceleration. The idea is examined by simulations using a quasi-one-dimensional dynamic compressor flow model coupled with a lumped combustor–turbine model. A notional single-spool turbojet with a low overall pressure ratio is modeled and simulated. Simulation results suggest that an ES/G, when used as an electric-assist motor during acceleration, can help the engine to accelerate roughly 11, 48, and 70% faster compared to the case without ES/G participation, by using electric power roughly equivalent to 0.1, 1, and 3% of full-speed fuel combustion power, respectively. Furthermore, the respective increase in the acceleration rate leads to an additional 19, 80, and 113% of propulsion impulse, respectively (i.e., thrust integrated over time), during the first 5 s following the acceleration command.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"52 15\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.b39242\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.b39242","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Active Energy Management for Enhanced Engine Transient Operations
Combat aircraft often require the engine to accelerate as fast as possible in response to the demand of maneuvering. The engine acceleration rate, however, is limited by the compressor surge constraint, which prevents more fuel addition that, otherwise, could provide for higher net shaft torque, and thus, faster acceleration. This paper examines the idea of using the electric starter/generator (ES/G) system to provide additional net shaft torque during this critical phase of acceleration. The idea is examined by simulations using a quasi-one-dimensional dynamic compressor flow model coupled with a lumped combustor–turbine model. A notional single-spool turbojet with a low overall pressure ratio is modeled and simulated. Simulation results suggest that an ES/G, when used as an electric-assist motor during acceleration, can help the engine to accelerate roughly 11, 48, and 70% faster compared to the case without ES/G participation, by using electric power roughly equivalent to 0.1, 1, and 3% of full-speed fuel combustion power, respectively. Furthermore, the respective increase in the acceleration rate leads to an additional 19, 80, and 113% of propulsion impulse, respectively (i.e., thrust integrated over time), during the first 5 s following the acceleration command.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.