{"title":"肿瘤特异性纳米otheranostic制剂与核磁共振成像引导的近红外-II和-III光动力疗法共同对抗深位原位胶质母细胞瘤","authors":"Karthik Nuthalapati, Raviraj Vankayala, Munusamy Shanmugam, Suresh Thangudu, Chi‐Shiun Chiang, Kuo Chu Hwang","doi":"10.1002/smsc.202400191","DOIUrl":null,"url":null,"abstract":"Glioblastoma multiforme (GBM) is one of the most aggressive, incurable, and difficult‐to‐treat malignant brain tumor with very poor survival rates. The gold standard in treating GBMs includes neurosurgical resection of the tumor, followed by the chemotherapy and radiotherapy. However, these strategies remain ineffective in treating patients with GBMs, as tumor recurrence always occur in most cases. Therefore, it remains a grand challenge to develop an effective strategy to combat orthotopic glioblastoma with simultaneous imaging capabilities to monitor the therapeutic outcomes. To tackle this challenge, this study demonstrates, for the first time, that a tumor‐specific europium hexaboride (EuB6)‐based nanomedicine surface‐modified with RGD‐K peptide to target αvβ3 integrin receptors overexpressed on the glioblastoma cells. Further, EuB6@RGD‐K NPs are able to exert theranostic capabilities to effectively diagnose and combat difficult‐to‐treat orthotopic glioblastoma tumors using NIR‐II 1064 nm and NIR‐III 1550 nm photodynamic therapy (NIR PDT) effects. In the in vivo experiments, the average half‐life of 55 d for mice treated with EuB6@RGD‐K NPs and exposed to NIR‐III 1550 nm light irradiation is far higher than that of EuB6@RGD‐K NPs exposed to NIR‐II 1064 nm light irradiation (25 d), PBS‐treated mice (20 d) and EuB6@RGD‐K NPs‐treated mice (no light irradiation, 18 d). To the best of our knowledge, this work represents the first example for destructing murine brain tumors via multi‐functional tumor‐specific europium hexaboride‐based nanotheranostic agent to mediate MR imaging‐guided NIR‐II/‐III photodynamic therapy.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":null,"pages":null},"PeriodicalIF":11.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Tumor‐Specific Nanotheranostic Agent with MR Image‐Guided NIR‐II & ‐III Photodynamic Therapy to Combat Against Deeply Seated Orthotopic Glioblastoma\",\"authors\":\"Karthik Nuthalapati, Raviraj Vankayala, Munusamy Shanmugam, Suresh Thangudu, Chi‐Shiun Chiang, Kuo Chu Hwang\",\"doi\":\"10.1002/smsc.202400191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glioblastoma multiforme (GBM) is one of the most aggressive, incurable, and difficult‐to‐treat malignant brain tumor with very poor survival rates. The gold standard in treating GBMs includes neurosurgical resection of the tumor, followed by the chemotherapy and radiotherapy. However, these strategies remain ineffective in treating patients with GBMs, as tumor recurrence always occur in most cases. Therefore, it remains a grand challenge to develop an effective strategy to combat orthotopic glioblastoma with simultaneous imaging capabilities to monitor the therapeutic outcomes. To tackle this challenge, this study demonstrates, for the first time, that a tumor‐specific europium hexaboride (EuB6)‐based nanomedicine surface‐modified with RGD‐K peptide to target αvβ3 integrin receptors overexpressed on the glioblastoma cells. Further, EuB6@RGD‐K NPs are able to exert theranostic capabilities to effectively diagnose and combat difficult‐to‐treat orthotopic glioblastoma tumors using NIR‐II 1064 nm and NIR‐III 1550 nm photodynamic therapy (NIR PDT) effects. In the in vivo experiments, the average half‐life of 55 d for mice treated with EuB6@RGD‐K NPs and exposed to NIR‐III 1550 nm light irradiation is far higher than that of EuB6@RGD‐K NPs exposed to NIR‐II 1064 nm light irradiation (25 d), PBS‐treated mice (20 d) and EuB6@RGD‐K NPs‐treated mice (no light irradiation, 18 d). To the best of our knowledge, this work represents the first example for destructing murine brain tumors via multi‐functional tumor‐specific europium hexaboride‐based nanotheranostic agent to mediate MR imaging‐guided NIR‐II/‐III photodynamic therapy.\",\"PeriodicalId\":29791,\"journal\":{\"name\":\"Small Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smsc.202400191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smsc.202400191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Engineering Tumor‐Specific Nanotheranostic Agent with MR Image‐Guided NIR‐II & ‐III Photodynamic Therapy to Combat Against Deeply Seated Orthotopic Glioblastoma
Glioblastoma multiforme (GBM) is one of the most aggressive, incurable, and difficult‐to‐treat malignant brain tumor with very poor survival rates. The gold standard in treating GBMs includes neurosurgical resection of the tumor, followed by the chemotherapy and radiotherapy. However, these strategies remain ineffective in treating patients with GBMs, as tumor recurrence always occur in most cases. Therefore, it remains a grand challenge to develop an effective strategy to combat orthotopic glioblastoma with simultaneous imaging capabilities to monitor the therapeutic outcomes. To tackle this challenge, this study demonstrates, for the first time, that a tumor‐specific europium hexaboride (EuB6)‐based nanomedicine surface‐modified with RGD‐K peptide to target αvβ3 integrin receptors overexpressed on the glioblastoma cells. Further, EuB6@RGD‐K NPs are able to exert theranostic capabilities to effectively diagnose and combat difficult‐to‐treat orthotopic glioblastoma tumors using NIR‐II 1064 nm and NIR‐III 1550 nm photodynamic therapy (NIR PDT) effects. In the in vivo experiments, the average half‐life of 55 d for mice treated with EuB6@RGD‐K NPs and exposed to NIR‐III 1550 nm light irradiation is far higher than that of EuB6@RGD‐K NPs exposed to NIR‐II 1064 nm light irradiation (25 d), PBS‐treated mice (20 d) and EuB6@RGD‐K NPs‐treated mice (no light irradiation, 18 d). To the best of our knowledge, this work represents the first example for destructing murine brain tumors via multi‐functional tumor‐specific europium hexaboride‐based nanotheranostic agent to mediate MR imaging‐guided NIR‐II/‐III photodynamic therapy.
期刊介绍:
Small Science is a premium multidisciplinary open access journal dedicated to publishing impactful research from all areas of nanoscience and nanotechnology. It features interdisciplinary original research and focused review articles on relevant topics. The journal covers design, characterization, mechanism, technology, and application of micro-/nanoscale structures and systems in various fields including physics, chemistry, materials science, engineering, environmental science, life science, biology, and medicine. It welcomes innovative interdisciplinary research and its readership includes professionals from academia and industry in fields such as chemistry, physics, materials science, biology, engineering, and environmental and analytical science. Small Science is indexed and abstracted in CAS, DOAJ, Clarivate Analytics, ProQuest Central, Publicly Available Content Database, Science Database, SCOPUS, and Web of Science.