后外侧平台骨折中新型解剖钢板的有限元分析

IF 1.6 4区 医学 Q2 SURGERY
Z. Jian, Xinhua Jiang, Dejian Li, Jianhua Zhou, Baoqing Yu, Chengqing Yi
{"title":"后外侧平台骨折中新型解剖钢板的有限元分析","authors":"Z. Jian, Xinhua Jiang, Dejian Li, Jianhua Zhou, Baoqing Yu, Chengqing Yi","doi":"10.3389/fsurg.2024.1346462","DOIUrl":null,"url":null,"abstract":"This study aims to analyze the biomechanical characteristics of posterolateral plateau fractures fixed by a novel anatomical plate using finite element analysis.A three-dimensional digital model of the full length of right tibiofibula was obtained by CT scanning. A posterolateral tibial plateau fracture model was then created. The acquired fracture model was assembled with 4 groups of internal fixations: Group A, novel anatomical plate; Group B, straight buttress plate; Group C, oblique T-shaped locking plate; Group D, two lag screws. Axial loads of 500, 1,000 and 1,500 N perpendicular to the horizontal plane were used to simulate the stress on the lateral plateau of a 65 kg person standing, walking and fast running.Vertical displacements of the posterolateral fragments in each of the four groups gradually increased under loads from 500 N to 1,500 N. The maximum displacement of the fracture fragment in four groups were all located on the lateral side of the proximal part, and the displacement gradually decreased from the proximal part to the distal end. The maximum displacement values under the axial load of 1,500 N was in the following order: novel anatomical plate (1.2365 mm) < oblique T-shaped locking plate (1.314 mm) < two lag screws (1.3747 mm) < straight buttress plate (1.3932 mm). As the axial load increased, the stress value of the different internal fixation models gradually increased. The stress behavior of the same internal fixation model under different loads was similar. The maximum stress value under the axial load of 1,500 N was in the following order: novel anatomical plate (114.63 MPa) < oblique T-shaped locking plate (277.17 MPa) < two lag screws (236.75 MPa) < straight buttress plate (136.2 MPa).The patients with posterolateral plateau fractures fixed with a novel anatomical plate in standing, walking and fast running can achieve satisfactory biomechanical results, which lays the foundation for future applications. At the same time, clinical fracture types are often diverse and accompanied by damage to the soft tissue. Therefore, the ideal surgical approach and appropriate internal fixation must be selected based on the patient's injury condition.","PeriodicalId":12564,"journal":{"name":"Frontiers in Surgery","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element analysis of a novel anatomical plate in posterolateral plateau fractures\",\"authors\":\"Z. Jian, Xinhua Jiang, Dejian Li, Jianhua Zhou, Baoqing Yu, Chengqing Yi\",\"doi\":\"10.3389/fsurg.2024.1346462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to analyze the biomechanical characteristics of posterolateral plateau fractures fixed by a novel anatomical plate using finite element analysis.A three-dimensional digital model of the full length of right tibiofibula was obtained by CT scanning. A posterolateral tibial plateau fracture model was then created. The acquired fracture model was assembled with 4 groups of internal fixations: Group A, novel anatomical plate; Group B, straight buttress plate; Group C, oblique T-shaped locking plate; Group D, two lag screws. Axial loads of 500, 1,000 and 1,500 N perpendicular to the horizontal plane were used to simulate the stress on the lateral plateau of a 65 kg person standing, walking and fast running.Vertical displacements of the posterolateral fragments in each of the four groups gradually increased under loads from 500 N to 1,500 N. The maximum displacement of the fracture fragment in four groups were all located on the lateral side of the proximal part, and the displacement gradually decreased from the proximal part to the distal end. The maximum displacement values under the axial load of 1,500 N was in the following order: novel anatomical plate (1.2365 mm) < oblique T-shaped locking plate (1.314 mm) < two lag screws (1.3747 mm) < straight buttress plate (1.3932 mm). As the axial load increased, the stress value of the different internal fixation models gradually increased. The stress behavior of the same internal fixation model under different loads was similar. The maximum stress value under the axial load of 1,500 N was in the following order: novel anatomical plate (114.63 MPa) < oblique T-shaped locking plate (277.17 MPa) < two lag screws (236.75 MPa) < straight buttress plate (136.2 MPa).The patients with posterolateral plateau fractures fixed with a novel anatomical plate in standing, walking and fast running can achieve satisfactory biomechanical results, which lays the foundation for future applications. At the same time, clinical fracture types are often diverse and accompanied by damage to the soft tissue. Therefore, the ideal surgical approach and appropriate internal fixation must be selected based on the patient's injury condition.\",\"PeriodicalId\":12564,\"journal\":{\"name\":\"Frontiers in Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fsurg.2024.1346462\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fsurg.2024.1346462","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在利用有限元分析法分析用新型解剖钢板固定的后外侧平台骨折的生物力学特征。通过 CT 扫描获得了右胫腓骨全长的三维数字模型。然后创建了胫骨后外侧平台骨折模型。将获得的骨折模型与 4 组内固定物组装在一起:A 组,新型解剖钢板;B 组,直形对接钢板;C 组,斜 T 形锁定钢板;D 组,两枚滞后螺钉。用垂直于水平面的 500、1000 和 1500 牛顿的轴向载荷来模拟体重 65 公斤的人在站立、行走和快跑时外侧平台所承受的压力。四组骨折片的最大位移均位于近端外侧,位移从近端向远端逐渐减小。在1 500 N轴向载荷下的最大位移值依次为:新型解剖钢板(1.2365 mm)<斜T形锁定钢板(1.314 mm)<两枚滞后螺钉(1.3747 mm)<直托钢板(1.3932 mm)。随着轴向载荷的增加,不同内固定模型的应力值逐渐增加。同一内固定模型在不同载荷下的应力表现相似。在 1,500 N 轴向载荷下的最大应力值依次为:新型解剖钢板(114.63 MPa)< 斜 T 形锁定钢板(277.17 MPa)< 两枚滞后螺钉(236.75 MPa)< 直托钢板(136.2 MPa)。同时,临床骨折类型往往多种多样,并伴有软组织损伤。因此,必须根据患者的伤情选择理想的手术方式和合适的内固定方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element analysis of a novel anatomical plate in posterolateral plateau fractures
This study aims to analyze the biomechanical characteristics of posterolateral plateau fractures fixed by a novel anatomical plate using finite element analysis.A three-dimensional digital model of the full length of right tibiofibula was obtained by CT scanning. A posterolateral tibial plateau fracture model was then created. The acquired fracture model was assembled with 4 groups of internal fixations: Group A, novel anatomical plate; Group B, straight buttress plate; Group C, oblique T-shaped locking plate; Group D, two lag screws. Axial loads of 500, 1,000 and 1,500 N perpendicular to the horizontal plane were used to simulate the stress on the lateral plateau of a 65 kg person standing, walking and fast running.Vertical displacements of the posterolateral fragments in each of the four groups gradually increased under loads from 500 N to 1,500 N. The maximum displacement of the fracture fragment in four groups were all located on the lateral side of the proximal part, and the displacement gradually decreased from the proximal part to the distal end. The maximum displacement values under the axial load of 1,500 N was in the following order: novel anatomical plate (1.2365 mm) < oblique T-shaped locking plate (1.314 mm) < two lag screws (1.3747 mm) < straight buttress plate (1.3932 mm). As the axial load increased, the stress value of the different internal fixation models gradually increased. The stress behavior of the same internal fixation model under different loads was similar. The maximum stress value under the axial load of 1,500 N was in the following order: novel anatomical plate (114.63 MPa) < oblique T-shaped locking plate (277.17 MPa) < two lag screws (236.75 MPa) < straight buttress plate (136.2 MPa).The patients with posterolateral plateau fractures fixed with a novel anatomical plate in standing, walking and fast running can achieve satisfactory biomechanical results, which lays the foundation for future applications. At the same time, clinical fracture types are often diverse and accompanied by damage to the soft tissue. Therefore, the ideal surgical approach and appropriate internal fixation must be selected based on the patient's injury condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Surgery
Frontiers in Surgery Medicine-Surgery
CiteScore
1.90
自引率
11.10%
发文量
1872
审稿时长
12 weeks
期刊介绍: Evidence of surgical interventions go back to prehistoric times. Since then, the field of surgery has developed into a complex array of specialties and procedures, particularly with the advent of microsurgery, lasers and minimally invasive techniques. The advanced skills now required from surgeons has led to ever increasing specialization, though these still share important fundamental principles. Frontiers in Surgery is the umbrella journal representing the publication interests of all surgical specialties. It is divided into several “Specialty Sections” listed below. All these sections have their own Specialty Chief Editor, Editorial Board and homepage, but all articles carry the citation Frontiers in Surgery. Frontiers in Surgery calls upon medical professionals and scientists from all surgical specialties to publish their experimental and clinical studies in this journal. By assembling all surgical specialties, which nonetheless retain their independence, under the common umbrella of Frontiers in Surgery, a powerful publication venue is created. Since there is often overlap and common ground between the different surgical specialties, assembly of all surgical disciplines into a single journal will foster a collaborative dialogue amongst the surgical community. This means that publications, which are also of interest to other surgical specialties, will reach a wider audience and have greater impact. The aim of this multidisciplinary journal is to create a discussion and knowledge platform of advances and research findings in surgical practice today to continuously improve clinical management of patients and foster innovation in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信