带有高导数项的波方程的 L2$L^{2}$ 生长特性

Pub Date : 2024-07-15 DOI:10.1002/mana.202300358
Xiaoyan Li, Ryo Ikehata
{"title":"带有高导数项的波方程的 L2$L^{2}$ 生长特性","authors":"Xiaoyan Li,&nbsp;Ryo Ikehata","doi":"10.1002/mana.202300358","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\bf R}^{n}$</annotation>\n </semantics></math> for the wave equation with a higher derivative term. We derive sharp growth estimates of the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^{2}$</annotation>\n </semantics></math>-norm of the solution itself for the case of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n = 1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n = 2$</annotation>\n </semantics></math>. By imposing the weighted <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^{1}$</annotation>\n </semantics></math>-initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\ge 3$</annotation>\n </semantics></math>, we observe that the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^{2}$</annotation>\n </semantics></math>-growth behavior of the solution never occurs in the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mo>∩</mo>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(L^{2}\\cap L^{1})$</annotation>\n </semantics></math>-framework of the initial data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L\\n 2\\n \\n $L^{2}$\\n -growth property for the wave equation with a higher derivative term\",\"authors\":\"Xiaoyan Li,&nbsp;Ryo Ikehata\",\"doi\":\"10.1002/mana.202300358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Cauchy problem in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>${\\\\bf R}^{n}$</annotation>\\n </semantics></math> for the wave equation with a higher derivative term. We derive sharp growth estimates of the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^{2}$</annotation>\\n </semantics></math>-norm of the solution itself for the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n = 1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n = 2$</annotation>\\n </semantics></math>. By imposing the weighted <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^{1}$</annotation>\\n </semantics></math>-initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\ge 3$</annotation>\\n </semantics></math>, we observe that the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^{2}$</annotation>\\n </semantics></math>-growth behavior of the solution never occurs in the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>∩</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(L^{2}\\\\cap L^{1})$</annotation>\\n </semantics></math>-framework of the initial data.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了带有高导数项的波方程中的考希问题。我们推导出在 和 的情况下,解本身的-正值的急剧增长估计值。通过施加加权初速度,我们可以得到解本身的下限和上限估计值。对于 和 的情况,我们发现解的增长行为从未出现在初始数据的框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
L 2 $L^{2}$ -growth property for the wave equation with a higher derivative term

We consider the Cauchy problem in R n ${\bf R}^{n}$ for the wave equation with a higher derivative term. We derive sharp growth estimates of the L 2 $L^{2}$ -norm of the solution itself for the case of n = 1 $n = 1$ and n = 2 $n = 2$ . By imposing the weighted L 1 $L^{1}$ -initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of n 3 $n\ge 3$ , we observe that the L 2 $L^{2}$ -growth behavior of the solution never occurs in the ( L 2 L 1 ) $(L^{2}\cap L^{1})$ -framework of the initial data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信