{"title":"带有高导数项的波方程的 L2$L^{2}$ 生长特性","authors":"Xiaoyan Li, Ryo Ikehata","doi":"10.1002/mana.202300358","DOIUrl":null,"url":null,"abstract":"<p>We consider the Cauchy problem in <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>${\\bf R}^{n}$</annotation>\n </semantics></math> for the wave equation with a higher derivative term. We derive sharp growth estimates of the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^{2}$</annotation>\n </semantics></math>-norm of the solution itself for the case of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$n = 1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n = 2$</annotation>\n </semantics></math>. By imposing the weighted <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^{1}$</annotation>\n </semantics></math>-initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\ge 3$</annotation>\n </semantics></math>, we observe that the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^{2}$</annotation>\n </semantics></math>-growth behavior of the solution never occurs in the <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <mo>∩</mo>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$(L^{2}\\cap L^{1})$</annotation>\n </semantics></math>-framework of the initial data.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L\\n 2\\n \\n $L^{2}$\\n -growth property for the wave equation with a higher derivative term\",\"authors\":\"Xiaoyan Li, Ryo Ikehata\",\"doi\":\"10.1002/mana.202300358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the Cauchy problem in <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>n</mi>\\n </msup>\\n <annotation>${\\\\bf R}^{n}$</annotation>\\n </semantics></math> for the wave equation with a higher derivative term. We derive sharp growth estimates of the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^{2}$</annotation>\\n </semantics></math>-norm of the solution itself for the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$n = 1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$n = 2$</annotation>\\n </semantics></math>. By imposing the weighted <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^{1}$</annotation>\\n </semantics></math>-initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$n\\\\ge 3$</annotation>\\n </semantics></math>, we observe that the <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <annotation>$L^{2}$</annotation>\\n </semantics></math>-growth behavior of the solution never occurs in the <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>∩</mo>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(L^{2}\\\\cap L^{1})$</annotation>\\n </semantics></math>-framework of the initial data.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
L
2
$L^{2}$
-growth property for the wave equation with a higher derivative term
We consider the Cauchy problem in for the wave equation with a higher derivative term. We derive sharp growth estimates of the -norm of the solution itself for the case of and . By imposing the weighted -initial velocity, we can get the lower and upper bound estimates of the solution itself. For the case of , we observe that the -growth behavior of the solution never occurs in the -framework of the initial data.