基于堆叠自动编码器和广义维纳过程的老化轴承剩余使用寿命预测方法

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhe Chen, Yonghua Li, Qi Gong, Denglong Wang, Xuejiao Yin
{"title":"基于堆叠自动编码器和广义维纳过程的老化轴承剩余使用寿命预测方法","authors":"Zhe Chen, Yonghua Li, Qi Gong, Denglong Wang, Xuejiao Yin","doi":"10.1088/1361-6501/ad633f","DOIUrl":null,"url":null,"abstract":"\n Remaining Useful Life (RUL) prediction using deep learning networks primarily produces point estimates of RUL, but capturing the inherent uncertainty in RUL prediction is difficult. The use of the stochastic process approach can reflect the uncertainty in RUL predictions. However, the amount of data generated during equipment operation cannot be effectively utilized. This paper aims to propose an adaptive RUL prediction method tailored for extensive datasets and prediction uncertainty, effectively harnessing the strengths of deep learning methods in managing massive data and stochastic process techniques in quantifying uncertainties. RUL prediction method, based on Stacked Autoencoder (SAE) combined with Generalized Wiener Process, employs SAE to extract profound underlying features from the monitoring signals. Principal Component Analysis (PCA) is then used to select highly trending features as inputs. The output of PCA accurately reflects health status. A Generalized Wiener Process is used to construct a model for the evolution of the health indicators. The estimation values for the model parameters are determined using the Maximum Likelihood Estimation method. Furthermore, an adaptive update is performed based on Bayesian theory. Utilizing the sense of the first hitting time concept, the Probability Density Function for RUL prediction is derived accurately. Finally, the effectiveness and superiority of the proposed method is verified using numerical simulations and experimental studies of bearing degradation data. The method improves the life prediction accuracy while reducing the prediction uncertainty.","PeriodicalId":18526,"journal":{"name":"Measurement Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remaining Useful Life Prediction Method Based on Stacked Autoencoder and Generalized Wiener Process for Degrading Bearing\",\"authors\":\"Zhe Chen, Yonghua Li, Qi Gong, Denglong Wang, Xuejiao Yin\",\"doi\":\"10.1088/1361-6501/ad633f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Remaining Useful Life (RUL) prediction using deep learning networks primarily produces point estimates of RUL, but capturing the inherent uncertainty in RUL prediction is difficult. The use of the stochastic process approach can reflect the uncertainty in RUL predictions. However, the amount of data generated during equipment operation cannot be effectively utilized. This paper aims to propose an adaptive RUL prediction method tailored for extensive datasets and prediction uncertainty, effectively harnessing the strengths of deep learning methods in managing massive data and stochastic process techniques in quantifying uncertainties. RUL prediction method, based on Stacked Autoencoder (SAE) combined with Generalized Wiener Process, employs SAE to extract profound underlying features from the monitoring signals. Principal Component Analysis (PCA) is then used to select highly trending features as inputs. The output of PCA accurately reflects health status. A Generalized Wiener Process is used to construct a model for the evolution of the health indicators. The estimation values for the model parameters are determined using the Maximum Likelihood Estimation method. Furthermore, an adaptive update is performed based on Bayesian theory. Utilizing the sense of the first hitting time concept, the Probability Density Function for RUL prediction is derived accurately. Finally, the effectiveness and superiority of the proposed method is verified using numerical simulations and experimental studies of bearing degradation data. The method improves the life prediction accuracy while reducing the prediction uncertainty.\",\"PeriodicalId\":18526,\"journal\":{\"name\":\"Measurement Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad633f\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad633f","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

使用深度学习网络进行剩余使用寿命(RUL)预测主要是对 RUL 进行点估计,但很难捕捉 RUL 预测中固有的不确定性。使用随机过程方法可以反映 RUL 预测中的不确定性。然而,设备运行过程中产生的大量数据无法得到有效利用。本文旨在提出一种针对大量数据集和预测不确定性的自适应 RUL 预测方法,有效利用深度学习方法在管理海量数据方面的优势和随机过程技术在量化不确定性方面的优势。RUL 预测方法基于堆栈式自动编码器(SAE)和广义维纳过程(Generalized Wiener Process),利用 SAE 从监测信号中提取深刻的底层特征。然后使用主成分分析法(PCA)选择趋势性强的特征作为输入。PCA 的输出可准确反映健康状况。广义维纳过程用于构建健康指标演变模型。模型参数的估计值采用最大似然估计法确定。此外,还根据贝叶斯理论进行了自适应更新。利用首击时间概念,准确推导出 RUL 预测的概率密度函数。最后,通过数值模拟和轴承退化数据的实验研究,验证了所提方法的有效性和优越性。该方法提高了寿命预测精度,同时降低了预测的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remaining Useful Life Prediction Method Based on Stacked Autoencoder and Generalized Wiener Process for Degrading Bearing
Remaining Useful Life (RUL) prediction using deep learning networks primarily produces point estimates of RUL, but capturing the inherent uncertainty in RUL prediction is difficult. The use of the stochastic process approach can reflect the uncertainty in RUL predictions. However, the amount of data generated during equipment operation cannot be effectively utilized. This paper aims to propose an adaptive RUL prediction method tailored for extensive datasets and prediction uncertainty, effectively harnessing the strengths of deep learning methods in managing massive data and stochastic process techniques in quantifying uncertainties. RUL prediction method, based on Stacked Autoencoder (SAE) combined with Generalized Wiener Process, employs SAE to extract profound underlying features from the monitoring signals. Principal Component Analysis (PCA) is then used to select highly trending features as inputs. The output of PCA accurately reflects health status. A Generalized Wiener Process is used to construct a model for the evolution of the health indicators. The estimation values for the model parameters are determined using the Maximum Likelihood Estimation method. Furthermore, an adaptive update is performed based on Bayesian theory. Utilizing the sense of the first hitting time concept, the Probability Density Function for RUL prediction is derived accurately. Finally, the effectiveness and superiority of the proposed method is verified using numerical simulations and experimental studies of bearing degradation data. The method improves the life prediction accuracy while reducing the prediction uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Science and Technology
Measurement Science and Technology 工程技术-工程:综合
CiteScore
4.30
自引率
16.70%
发文量
656
审稿时长
4.9 months
期刊介绍: Measurement Science and Technology publishes articles on new measurement techniques and associated instrumentation. Papers that describe experiments must represent an advance in measurement science or measurement technique rather than the application of established experimental technique. Bearing in mind the multidisciplinary nature of the journal, authors must provide an introduction to their work that makes clear the novelty, significance, broader relevance of their work in a measurement context and relevance to the readership of Measurement Science and Technology. All submitted articles should contain consideration of the uncertainty, precision and/or accuracy of the measurements presented. Subject coverage includes the theory, practice and application of measurement in physics, chemistry, engineering and the environmental and life sciences from inception to commercial exploitation. Publications in the journal should emphasize the novelty of reported methods, characterize them and demonstrate their performance using examples or applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信