地下水波动和降雨对复杂地层中古遗址地面和结构响应的数值研究

IF 1.4 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Geological Journal Pub Date : 2024-07-15 DOI:10.1002/gj.5019
Wengang Zhang, Shuo Wang, Siwei Jiang, Chunxia Chen, Weixin Sun
{"title":"地下水波动和降雨对复杂地层中古遗址地面和结构响应的数值研究","authors":"Wengang Zhang,&nbsp;Shuo Wang,&nbsp;Siwei Jiang,&nbsp;Chunxia Chen,&nbsp;Weixin Sun","doi":"10.1002/gj.5019","DOIUrl":null,"url":null,"abstract":"<p>As more and more ancient sites are discovered around the world, protecting them in situ has become a challenge due to issues such as ground settlement and masonry wall leaks caused by groundwater fluctuation or rainfall. In this study, laboratory tests, borehole tests and field high-density resistivity detections are conducted to obtain information for numerical modelling, including design parameters. A complex three-dimensional hydrological–mechanical coupling model is then established to investigate ground settlement and wall deformation caused by groundwater fluctuation and rainfall. The seepage simulation results for the initial state are accurately verified by high-density resistivity imaging. Both measured data and numerical results indicate that changes in a single water head point mainly result in wall settlement. The pattern of wall deformation changes from settlement to lateral deformation with an increase in the drawdown rate of groundwater level. Furthermore, delayed rainfall and high-intensity rainfall can increase foundation settlement and wall deformation. Settlement deformation determines the upper limit of the global deformation when wall nodes are mainly affected. In contrast, if lateral spreading dominates wall deformation, it determines the lower limit of the global deformation. This study provides reference for in situ protection and foundation reinforcement of ancient sites.</p>","PeriodicalId":12784,"journal":{"name":"Geological Journal","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation on ground and structure response of ancient site in complex strata caused by groundwater fluctuation and rainfall\",\"authors\":\"Wengang Zhang,&nbsp;Shuo Wang,&nbsp;Siwei Jiang,&nbsp;Chunxia Chen,&nbsp;Weixin Sun\",\"doi\":\"10.1002/gj.5019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As more and more ancient sites are discovered around the world, protecting them in situ has become a challenge due to issues such as ground settlement and masonry wall leaks caused by groundwater fluctuation or rainfall. In this study, laboratory tests, borehole tests and field high-density resistivity detections are conducted to obtain information for numerical modelling, including design parameters. A complex three-dimensional hydrological–mechanical coupling model is then established to investigate ground settlement and wall deformation caused by groundwater fluctuation and rainfall. The seepage simulation results for the initial state are accurately verified by high-density resistivity imaging. Both measured data and numerical results indicate that changes in a single water head point mainly result in wall settlement. The pattern of wall deformation changes from settlement to lateral deformation with an increase in the drawdown rate of groundwater level. Furthermore, delayed rainfall and high-intensity rainfall can increase foundation settlement and wall deformation. Settlement deformation determines the upper limit of the global deformation when wall nodes are mainly affected. In contrast, if lateral spreading dominates wall deformation, it determines the lower limit of the global deformation. This study provides reference for in situ protection and foundation reinforcement of ancient sites.</p>\",\"PeriodicalId\":12784,\"journal\":{\"name\":\"Geological Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gj.5019\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Journal","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gj.5019","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着世界各地发现的古遗址越来越多,由于地下水波动或降雨造成的地面沉降和砌墙渗漏等问题,对古遗址的原址保护已成为一项挑战。本研究通过实验室测试、钻孔测试和实地高密度电阻率探测,获取包括设计参数在内的数值建模信息。然后建立了一个复杂的三维水文机械耦合模型,以研究地下水波动和降雨引起的地面沉降和墙体变形。初始状态的渗流模拟结果得到了高密度电阻率成像的精确验证。测量数据和数值结果都表明,单个水头点的变化主要导致墙体沉降。随着地下水位下降速度的增加,墙体变形的模式也从沉降变为横向变形。此外,延迟降雨和高强度降雨会加剧地基沉降和墙体变形。当墙体节点主要受影响时,沉降变形决定了整体变形的上限。相反,如果墙体变形以横向扩展为主,则横向扩展决定了整体变形的下限。这项研究为古遗址的原址保护和地基加固提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigation on ground and structure response of ancient site in complex strata caused by groundwater fluctuation and rainfall

As more and more ancient sites are discovered around the world, protecting them in situ has become a challenge due to issues such as ground settlement and masonry wall leaks caused by groundwater fluctuation or rainfall. In this study, laboratory tests, borehole tests and field high-density resistivity detections are conducted to obtain information for numerical modelling, including design parameters. A complex three-dimensional hydrological–mechanical coupling model is then established to investigate ground settlement and wall deformation caused by groundwater fluctuation and rainfall. The seepage simulation results for the initial state are accurately verified by high-density resistivity imaging. Both measured data and numerical results indicate that changes in a single water head point mainly result in wall settlement. The pattern of wall deformation changes from settlement to lateral deformation with an increase in the drawdown rate of groundwater level. Furthermore, delayed rainfall and high-intensity rainfall can increase foundation settlement and wall deformation. Settlement deformation determines the upper limit of the global deformation when wall nodes are mainly affected. In contrast, if lateral spreading dominates wall deformation, it determines the lower limit of the global deformation. This study provides reference for in situ protection and foundation reinforcement of ancient sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geological Journal
Geological Journal 地学-地球科学综合
CiteScore
4.20
自引率
11.10%
发文量
269
审稿时长
3 months
期刊介绍: In recent years there has been a growth of specialist journals within geological sciences. Nevertheless, there is an important role for a journal of an interdisciplinary kind. Traditionally, GEOLOGICAL JOURNAL has been such a journal and continues in its aim of promoting interest in all branches of the Geological Sciences, through publication of original research papers and review articles. The journal publishes Special Issues with a common theme or regional coverage e.g. Chinese Dinosaurs; Tectonics of the Eastern Mediterranean, Triassic basins of the Central and North Atlantic Borderlands). These are extensively cited. The Journal has a particular interest in publishing papers on regional case studies from any global locality which have conclusions of general interest. Such papers may emphasize aspects across the full spectrum of geological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信