{"title":"现代应用中卟啉和粘土矿物体系独特的结构-活性关系:全面回顾","authors":"J. Hassen, J. Silver","doi":"10.15255/cabeq.2023.2279","DOIUrl":null,"url":null,"abstract":"Porphyrins are a group of organic heterocyclic macromolecules, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges. This unique and significant group of compounds has a special relationship with inorganic clay minerals, which are hydrous aluminium phyllosilicates. Clay minerals, known to be typical layered materials, act as unique hosts for porphyrin molecules or their precursor materials. When the porphyrin compound enters between the layers of a clay, it can orient horizontally, diagonally, or perpendicularly. Cation-exchanged clay can provide the acidity required for the formation of porphyrins from its precursor molecules without the need for other auxiliary factors such as heating. Clays are also capable of facilitating the incorporation of various metals into the porphyrin ring to form a metalloporphyrin. The properties of these metalloporphyrin clay complexes have been studied extensively. Modern applications of such clay-porphyrin materials include their use as heterogeneous catalysts for oxidation and polymerization reactions in the synthesis of new materials. These heterogeneous catalysts have a wide range of uses in vital sectors, such as food manufacturing, pharmaceuticals, and the chemical industry. Additionally, clay-porphyrin systems are employed in constructing various types of self-assembling artificial photo-synthesis systems.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"30 1","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Unique Structure–Activity Relationship of Porphyrins and Clay Mineral Systems in Modern Applications: A Comprehensive Review\",\"authors\":\"J. Hassen, J. Silver\",\"doi\":\"10.15255/cabeq.2023.2279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Porphyrins are a group of organic heterocyclic macromolecules, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges. This unique and significant group of compounds has a special relationship with inorganic clay minerals, which are hydrous aluminium phyllosilicates. Clay minerals, known to be typical layered materials, act as unique hosts for porphyrin molecules or their precursor materials. When the porphyrin compound enters between the layers of a clay, it can orient horizontally, diagonally, or perpendicularly. Cation-exchanged clay can provide the acidity required for the formation of porphyrins from its precursor molecules without the need for other auxiliary factors such as heating. Clays are also capable of facilitating the incorporation of various metals into the porphyrin ring to form a metalloporphyrin. The properties of these metalloporphyrin clay complexes have been studied extensively. Modern applications of such clay-porphyrin materials include their use as heterogeneous catalysts for oxidation and polymerization reactions in the synthesis of new materials. These heterogeneous catalysts have a wide range of uses in vital sectors, such as food manufacturing, pharmaceuticals, and the chemical industry. Additionally, clay-porphyrin systems are employed in constructing various types of self-assembling artificial photo-synthesis systems.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2023.2279\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2023.2279","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The Unique Structure–Activity Relationship of Porphyrins and Clay Mineral Systems in Modern Applications: A Comprehensive Review
Porphyrins are a group of organic heterocyclic macromolecules, composed of four modified pyrrole subunits interconnected at their α carbon atoms via methine bridges. This unique and significant group of compounds has a special relationship with inorganic clay minerals, which are hydrous aluminium phyllosilicates. Clay minerals, known to be typical layered materials, act as unique hosts for porphyrin molecules or their precursor materials. When the porphyrin compound enters between the layers of a clay, it can orient horizontally, diagonally, or perpendicularly. Cation-exchanged clay can provide the acidity required for the formation of porphyrins from its precursor molecules without the need for other auxiliary factors such as heating. Clays are also capable of facilitating the incorporation of various metals into the porphyrin ring to form a metalloporphyrin. The properties of these metalloporphyrin clay complexes have been studied extensively. Modern applications of such clay-porphyrin materials include their use as heterogeneous catalysts for oxidation and polymerization reactions in the synthesis of new materials. These heterogeneous catalysts have a wide range of uses in vital sectors, such as food manufacturing, pharmaceuticals, and the chemical industry. Additionally, clay-porphyrin systems are employed in constructing various types of self-assembling artificial photo-synthesis systems.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.