{"title":"稳定的布辛斯对流:参数解析和计算","authors":"Jeremiah S. Lane, Benjamin F. Akers","doi":"10.1111/sapm.12740","DOIUrl":null,"url":null,"abstract":"<p>Steady solutions to the Navier–Stokes equations with internal temperature forcing are considered. The equations are solved in two dimensions using the Boussinesq approximation to couple temperature and density fluctuations. A perturbative Stokes expansion is used to prove that that steady flow variables are parametrically analytic in the size of the forcing. The Stokes expansion is complemented with analytic continuation, via functional Padé approximation. The zeros of the denominator polynomials in the Padé approximants are observed to agree with a numerical prediction for the location of singularities of the steady flow solutions. The Padé representations not only prove to be good approximations to the true flow solutions for moderate intensity forcing, but are also used to initialize a Newton solver to compute large amplitude solutions. The composite procedure is used to compute steady flow solutions with forcing several orders of magnitude larger than the fixed-point method developed in previous work.</p>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"153 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady Boussinesq convection: Parametric analyticity and computation\",\"authors\":\"Jeremiah S. Lane, Benjamin F. Akers\",\"doi\":\"10.1111/sapm.12740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Steady solutions to the Navier–Stokes equations with internal temperature forcing are considered. The equations are solved in two dimensions using the Boussinesq approximation to couple temperature and density fluctuations. A perturbative Stokes expansion is used to prove that that steady flow variables are parametrically analytic in the size of the forcing. The Stokes expansion is complemented with analytic continuation, via functional Padé approximation. The zeros of the denominator polynomials in the Padé approximants are observed to agree with a numerical prediction for the location of singularities of the steady flow solutions. The Padé representations not only prove to be good approximations to the true flow solutions for moderate intensity forcing, but are also used to initialize a Newton solver to compute large amplitude solutions. The composite procedure is used to compute steady flow solutions with forcing several orders of magnitude larger than the fixed-point method developed in previous work.</p>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"153 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12740\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12740","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Steady Boussinesq convection: Parametric analyticity and computation
Steady solutions to the Navier–Stokes equations with internal temperature forcing are considered. The equations are solved in two dimensions using the Boussinesq approximation to couple temperature and density fluctuations. A perturbative Stokes expansion is used to prove that that steady flow variables are parametrically analytic in the size of the forcing. The Stokes expansion is complemented with analytic continuation, via functional Padé approximation. The zeros of the denominator polynomials in the Padé approximants are observed to agree with a numerical prediction for the location of singularities of the steady flow solutions. The Padé representations not only prove to be good approximations to the true flow solutions for moderate intensity forcing, but are also used to initialize a Newton solver to compute large amplitude solutions. The composite procedure is used to compute steady flow solutions with forcing several orders of magnitude larger than the fixed-point method developed in previous work.
期刊介绍:
Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.