具有静力确定界面的粘性阻尼结构的动态模型还原

IF 2.1 3区 工程技术 Q2 ENGINEERING, AEROSPACE
AIAA Journal Pub Date : 2024-07-15 DOI:10.2514/1.j064199
Lian-Kai Xu, Wei Wang, Wang-Bai Pan, Guo-An Tang
{"title":"具有静力确定界面的粘性阻尼结构的动态模型还原","authors":"Lian-Kai Xu, Wei Wang, Wang-Bai Pan, Guo-An Tang","doi":"10.2514/1.j064199","DOIUrl":null,"url":null,"abstract":"A novel model reduction method for viscously damped structures with statically determinate interfaces, such as spacecraft flexible appendages, is proposed. The paper presents a derivation of the complete complex modal expansion of the interface dynamic stiffness of these structures. Based on the identity relation for all complex modes, which is obtained during the derivation, it is found that the interface acceleration impedance can be expressed as a rational fraction with high accuracy using only low-order complex modes. Using this rational fraction as an approximation model, numerical results of the frequency response can be fitted. The fitted interface acceleration impedance can be applied to real-time control as a reduced model in the form of a transfer function. Furthermore, it can be transformed into the form of system matrices by introducing auxiliary variables, which then participate in the dynamic analysis of the assembly. The reduction process circumvents complex modal analysis and necessitates only the results of frequency responses. Thanks to the powerful ability of conventional finite element software to perform frequency response analysis, this reduction method can be used for large-scale complex models in actual engineering applications.","PeriodicalId":7722,"journal":{"name":"AIAA Journal","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Model Reduction for Viscously Damped Structures with Statically Determinate Interfaces\",\"authors\":\"Lian-Kai Xu, Wei Wang, Wang-Bai Pan, Guo-An Tang\",\"doi\":\"10.2514/1.j064199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel model reduction method for viscously damped structures with statically determinate interfaces, such as spacecraft flexible appendages, is proposed. The paper presents a derivation of the complete complex modal expansion of the interface dynamic stiffness of these structures. Based on the identity relation for all complex modes, which is obtained during the derivation, it is found that the interface acceleration impedance can be expressed as a rational fraction with high accuracy using only low-order complex modes. Using this rational fraction as an approximation model, numerical results of the frequency response can be fitted. The fitted interface acceleration impedance can be applied to real-time control as a reduced model in the form of a transfer function. Furthermore, it can be transformed into the form of system matrices by introducing auxiliary variables, which then participate in the dynamic analysis of the assembly. The reduction process circumvents complex modal analysis and necessitates only the results of frequency responses. Thanks to the powerful ability of conventional finite element software to perform frequency response analysis, this reduction method can be used for large-scale complex models in actual engineering applications.\",\"PeriodicalId\":7722,\"journal\":{\"name\":\"AIAA Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIAA Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.j064199\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.j064199","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

针对具有静态确定界面的粘性阻尼结构(如航天器柔性附属装置),提出了一种新的模型还原方法。论文提出了这些结构的界面动态刚度的完整复模态展开推导。根据推导过程中获得的所有复模态的同一性关系,可以发现仅使用低阶复模态就可以用有理分数高精度地表示界面加速阻抗。使用这个有理分数作为近似模型,可以拟合频率响应的数值结果。拟合后的界面加速阻抗可作为传递函数形式的简化模型应用于实时控制。此外,还可以通过引入辅助变量,将其转换为系统矩阵的形式,然后参与装配的动态分析。简化过程避免了复杂的模态分析,只需要频率响应的结果。得益于传统有限元软件强大的频率响应分析能力,这种还原方法可用于实际工程应用中的大型复杂模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Model Reduction for Viscously Damped Structures with Statically Determinate Interfaces
A novel model reduction method for viscously damped structures with statically determinate interfaces, such as spacecraft flexible appendages, is proposed. The paper presents a derivation of the complete complex modal expansion of the interface dynamic stiffness of these structures. Based on the identity relation for all complex modes, which is obtained during the derivation, it is found that the interface acceleration impedance can be expressed as a rational fraction with high accuracy using only low-order complex modes. Using this rational fraction as an approximation model, numerical results of the frequency response can be fitted. The fitted interface acceleration impedance can be applied to real-time control as a reduced model in the form of a transfer function. Furthermore, it can be transformed into the form of system matrices by introducing auxiliary variables, which then participate in the dynamic analysis of the assembly. The reduction process circumvents complex modal analysis and necessitates only the results of frequency responses. Thanks to the powerful ability of conventional finite element software to perform frequency response analysis, this reduction method can be used for large-scale complex models in actual engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIAA Journal
AIAA Journal 工程技术-工程:宇航
CiteScore
5.60
自引率
12.00%
发文量
458
审稿时长
4.6 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of astronautics and aeronautics through the dissemination of original archival research papers disclosing new theoretical developments and/or experimental results. The topics include aeroacoustics, aerodynamics, combustion, fundamentals of propulsion, fluid mechanics and reacting flows, fundamental aspects of the aerospace environment, hydrodynamics, lasers and associated phenomena, plasmas, research instrumentation and facilities, structural mechanics and materials, optimization, and thermomechanics and thermochemistry. Papers also are sought which review in an intensive manner the results of recent research developments on any of the topics listed above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信