{"title":"技术说明--可重复使用资源的近优贝叶斯在线分类","authors":"Yiding Feng, Rad Niazadeh, Amin Saberi","doi":"10.1287/opre.2020.0687","DOIUrl":null,"url":null,"abstract":"Near-Optimal Bayesian Online Assortment of Reusable Resources Motivated by rental services in e-commerce, we consider revenue maximization in the online assortment of reusable resources for different types of arriving consumers. We design competitive online algorithms compared with the optimal online policy in the Bayesian setting, where consumer types are drawn independently from known heterogeneous distributions over time. In scenarios with large initial inventories, our main result is a near-optimal competitive algorithm for reusable resources. Our algorithm relies on an expected linear programming (LP) benchmark, solves this LP, and simulates the solution through independent randomized rounding. The main challenge is achieving inventory feasibility efficiently using these simulation-based algorithms. To address this, we design discarding policies for each resource, balancing inventory feasibility and revenue loss. Discarding a unit of a resource impacts future consumption of other resources, so we introduce postprocessing assortment procedures to design and analyze our discarding policies. Additionally, we present an improved competitive algorithm for nonreusable resources and evaluate our algorithms using numerical simulations on synthetic data.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"27 4","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical Note—Near-Optimal Bayesian Online Assortment of Reusable Resources\",\"authors\":\"Yiding Feng, Rad Niazadeh, Amin Saberi\",\"doi\":\"10.1287/opre.2020.0687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near-Optimal Bayesian Online Assortment of Reusable Resources Motivated by rental services in e-commerce, we consider revenue maximization in the online assortment of reusable resources for different types of arriving consumers. We design competitive online algorithms compared with the optimal online policy in the Bayesian setting, where consumer types are drawn independently from known heterogeneous distributions over time. In scenarios with large initial inventories, our main result is a near-optimal competitive algorithm for reusable resources. Our algorithm relies on an expected linear programming (LP) benchmark, solves this LP, and simulates the solution through independent randomized rounding. The main challenge is achieving inventory feasibility efficiently using these simulation-based algorithms. To address this, we design discarding policies for each resource, balancing inventory feasibility and revenue loss. Discarding a unit of a resource impacts future consumption of other resources, so we introduce postprocessing assortment procedures to design and analyze our discarding policies. Additionally, we present an improved competitive algorithm for nonreusable resources and evaluate our algorithms using numerical simulations on synthetic data.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"27 4\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/opre.2020.0687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/opre.2020.0687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Technical Note—Near-Optimal Bayesian Online Assortment of Reusable Resources
Near-Optimal Bayesian Online Assortment of Reusable Resources Motivated by rental services in e-commerce, we consider revenue maximization in the online assortment of reusable resources for different types of arriving consumers. We design competitive online algorithms compared with the optimal online policy in the Bayesian setting, where consumer types are drawn independently from known heterogeneous distributions over time. In scenarios with large initial inventories, our main result is a near-optimal competitive algorithm for reusable resources. Our algorithm relies on an expected linear programming (LP) benchmark, solves this LP, and simulates the solution through independent randomized rounding. The main challenge is achieving inventory feasibility efficiently using these simulation-based algorithms. To address this, we design discarding policies for each resource, balancing inventory feasibility and revenue loss. Discarding a unit of a resource impacts future consumption of other resources, so we introduce postprocessing assortment procedures to design and analyze our discarding policies. Additionally, we present an improved competitive algorithm for nonreusable resources and evaluate our algorithms using numerical simulations on synthetic data.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.