Wei Wei, Yang Liu, Haolin Deng, Zhilin Wei, Tingshuang Wang, Guangxian Li
{"title":"监测镁合金近红外和蓝色复合激光焊接中的焊池、锁孔形态和材料渗透状态","authors":"Wei Wei, Yang Liu, Haolin Deng, Zhilin Wei, Tingshuang Wang, Guangxian Li","doi":"10.3390/jmmp8040150","DOIUrl":null,"url":null,"abstract":"The laser welding of magnesium alloys presents challenges attributed to their low laser-absorbing efficiency, resulting in instabilities during the welding process and substandard welding quality. Furthermore, the complexity of signals during laser welding processes makes it difficult to accurately monitor the molten state of magnesium alloys. In this study, magnesium alloys were welded using near-infrared and blue lasers. By varying the power of the near-infrared laser, the energy absorption pattern of magnesium alloys toward the composite laser was investigated. The U-Net model was employed for the segmentation of welding images to accurately extract the features of the melt pool and keyhole. Subsequently, the penetrating states were predicted using the convolutional neural network (CNN), and the novel approach employing Local Binary Pattern (LBP) features + a backpropagation (BP) neural network was applied for comparison. The extracted images achieved MPA and MIoU values of 89.54% and 81.81%, and the prediction accuracy of the model can reach up to 100%. The applicability of the two monitoring approaches in different scenarios was discussed, providing guidance for the quality of magnesium welding.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"15 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring of the Weld Pool, Keyhole Morphology and Material Penetration State in Near-Infrared and Blue Composite Laser Welding of Magnesium Alloy\",\"authors\":\"Wei Wei, Yang Liu, Haolin Deng, Zhilin Wei, Tingshuang Wang, Guangxian Li\",\"doi\":\"10.3390/jmmp8040150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The laser welding of magnesium alloys presents challenges attributed to their low laser-absorbing efficiency, resulting in instabilities during the welding process and substandard welding quality. Furthermore, the complexity of signals during laser welding processes makes it difficult to accurately monitor the molten state of magnesium alloys. In this study, magnesium alloys were welded using near-infrared and blue lasers. By varying the power of the near-infrared laser, the energy absorption pattern of magnesium alloys toward the composite laser was investigated. The U-Net model was employed for the segmentation of welding images to accurately extract the features of the melt pool and keyhole. Subsequently, the penetrating states were predicted using the convolutional neural network (CNN), and the novel approach employing Local Binary Pattern (LBP) features + a backpropagation (BP) neural network was applied for comparison. The extracted images achieved MPA and MIoU values of 89.54% and 81.81%, and the prediction accuracy of the model can reach up to 100%. The applicability of the two monitoring approaches in different scenarios was discussed, providing guidance for the quality of magnesium welding.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"15 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp8040150\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp8040150","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Monitoring of the Weld Pool, Keyhole Morphology and Material Penetration State in Near-Infrared and Blue Composite Laser Welding of Magnesium Alloy
The laser welding of magnesium alloys presents challenges attributed to their low laser-absorbing efficiency, resulting in instabilities during the welding process and substandard welding quality. Furthermore, the complexity of signals during laser welding processes makes it difficult to accurately monitor the molten state of magnesium alloys. In this study, magnesium alloys were welded using near-infrared and blue lasers. By varying the power of the near-infrared laser, the energy absorption pattern of magnesium alloys toward the composite laser was investigated. The U-Net model was employed for the segmentation of welding images to accurately extract the features of the melt pool and keyhole. Subsequently, the penetrating states were predicted using the convolutional neural network (CNN), and the novel approach employing Local Binary Pattern (LBP) features + a backpropagation (BP) neural network was applied for comparison. The extracted images achieved MPA and MIoU values of 89.54% and 81.81%, and the prediction accuracy of the model can reach up to 100%. The applicability of the two monitoring approaches in different scenarios was discussed, providing guidance for the quality of magnesium welding.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico