António Benjamim Mapossa, Afonso Henrique da Silva Júnior, Washington Mhike, Uttandaraman Sundararaj, Carlos Rafael Silva de Oliveira
{"title":"用于疟疾控制的电纺聚合物纳米纤维:缓释驱蚊技术的进步","authors":"António Benjamim Mapossa, Afonso Henrique da Silva Júnior, Washington Mhike, Uttandaraman Sundararaj, Carlos Rafael Silva de Oliveira","doi":"10.1002/mame.202400130","DOIUrl":null,"url":null,"abstract":"<p>The textile industry comprises technologies that transform synthetic or natural fibers into yarn, cloth, and felt for manufacturing clothing, upholstery, and household linens. The major public health threat in tropical and subtropical countries is mosquito-borne malaria. Nowadays, the demand for insect repellent-based textiles is continuously rising, as they are used for protection against diseases transmitted by mosquitoes. The present work reviews studies on the fabrication of insect repellent containing electrospun polymeric nanofibers as principal tools for protecting people against mosquito bites. Electrospinning technology is a remarkably facile technique for fabricating polymeric nanofiber devices. The technique is outlined and elucidated. The performance of insect repellent-based polymeric nanofibers against mosquitoes is carefully reported and comprehensively reviewed in-depth. Furthermore, the progress made on the mathematical modeling of the release rate of repellents through polymeric nanofiber devices is reviewed. The reviewed studies demonstrate that repellents can be released slowly from electrospun nanofibers, increasing the product's protection period against insects. The reviewed works suggest that electrospinning technology has led to an effective and facile methodology for fabricating functional nanofiber textiles with insect repellent. The reviewed studies showed that product-based repellents can be effective not only against malaria but also against other mosquito-borne diseases.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 8","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400130","citationCount":"0","resultStr":"{\"title\":\"Electrospun Polymeric Nanofibers for Malaria Control: Advances in Slow-Release Mosquito Repellent Technology\",\"authors\":\"António Benjamim Mapossa, Afonso Henrique da Silva Júnior, Washington Mhike, Uttandaraman Sundararaj, Carlos Rafael Silva de Oliveira\",\"doi\":\"10.1002/mame.202400130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The textile industry comprises technologies that transform synthetic or natural fibers into yarn, cloth, and felt for manufacturing clothing, upholstery, and household linens. The major public health threat in tropical and subtropical countries is mosquito-borne malaria. Nowadays, the demand for insect repellent-based textiles is continuously rising, as they are used for protection against diseases transmitted by mosquitoes. The present work reviews studies on the fabrication of insect repellent containing electrospun polymeric nanofibers as principal tools for protecting people against mosquito bites. Electrospinning technology is a remarkably facile technique for fabricating polymeric nanofiber devices. The technique is outlined and elucidated. The performance of insect repellent-based polymeric nanofibers against mosquitoes is carefully reported and comprehensively reviewed in-depth. Furthermore, the progress made on the mathematical modeling of the release rate of repellents through polymeric nanofiber devices is reviewed. The reviewed studies demonstrate that repellents can be released slowly from electrospun nanofibers, increasing the product's protection period against insects. The reviewed works suggest that electrospinning technology has led to an effective and facile methodology for fabricating functional nanofiber textiles with insect repellent. The reviewed studies showed that product-based repellents can be effective not only against malaria but also against other mosquito-borne diseases.</p>\",\"PeriodicalId\":18151,\"journal\":{\"name\":\"Macromolecular Materials and Engineering\",\"volume\":\"309 8\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400130\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Materials and Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400130\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Electrospun Polymeric Nanofibers for Malaria Control: Advances in Slow-Release Mosquito Repellent Technology
The textile industry comprises technologies that transform synthetic or natural fibers into yarn, cloth, and felt for manufacturing clothing, upholstery, and household linens. The major public health threat in tropical and subtropical countries is mosquito-borne malaria. Nowadays, the demand for insect repellent-based textiles is continuously rising, as they are used for protection against diseases transmitted by mosquitoes. The present work reviews studies on the fabrication of insect repellent containing electrospun polymeric nanofibers as principal tools for protecting people against mosquito bites. Electrospinning technology is a remarkably facile technique for fabricating polymeric nanofiber devices. The technique is outlined and elucidated. The performance of insect repellent-based polymeric nanofibers against mosquitoes is carefully reported and comprehensively reviewed in-depth. Furthermore, the progress made on the mathematical modeling of the release rate of repellents through polymeric nanofiber devices is reviewed. The reviewed studies demonstrate that repellents can be released slowly from electrospun nanofibers, increasing the product's protection period against insects. The reviewed works suggest that electrospinning technology has led to an effective and facile methodology for fabricating functional nanofiber textiles with insect repellent. The reviewed studies showed that product-based repellents can be effective not only against malaria but also against other mosquito-borne diseases.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, and processing of advanced polymeric materials.