{"title":"浅水海底圣诞树中 Q355ND 框架的阴极保护数值分析","authors":"Shaodong Ju, Yuming Liu, Qishuai Yin, Xing Wang, Shiqiang Wang, Zitao Jiang, Siyao Deng","doi":"10.1515/mt-2023-0394","DOIUrl":null,"url":null,"abstract":"\n This study develops a 3D model of a Christmas tree using cathodic protection technology and conducts numerical simulations on the Q355ND framework of a shallow Christmas tree. The boundary element method is employed for modeling, examining the distribution of protection potentials under varying corrosion layer breakage rates, anode numbers, and positions. The influence of sacrificial anode parameters on the cathodic protection effect of the Christmas tree is also investigated. The findings reveal that when the breakage rate of the anticorrosion layer reaches 35 % during Christmas tree operation, the sacrificial anode fails to provide complete protection. However, if the coating breakage rate is 10 %, reducing the number of anodes by six can still achieve a protection potential of −850 mV. Thus, it is imperative for Christmas trees to maintain a corrosion protection layer breakage rate below 35 %. Beyond this threshold, sacrificial anodes exhibit minimal effectiveness in preserving their integrity.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"18 8","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree\",\"authors\":\"Shaodong Ju, Yuming Liu, Qishuai Yin, Xing Wang, Shiqiang Wang, Zitao Jiang, Siyao Deng\",\"doi\":\"10.1515/mt-2023-0394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study develops a 3D model of a Christmas tree using cathodic protection technology and conducts numerical simulations on the Q355ND framework of a shallow Christmas tree. The boundary element method is employed for modeling, examining the distribution of protection potentials under varying corrosion layer breakage rates, anode numbers, and positions. The influence of sacrificial anode parameters on the cathodic protection effect of the Christmas tree is also investigated. The findings reveal that when the breakage rate of the anticorrosion layer reaches 35 % during Christmas tree operation, the sacrificial anode fails to provide complete protection. However, if the coating breakage rate is 10 %, reducing the number of anodes by six can still achieve a protection potential of −850 mV. Thus, it is imperative for Christmas trees to maintain a corrosion protection layer breakage rate below 35 %. Beyond this threshold, sacrificial anodes exhibit minimal effectiveness in preserving their integrity.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"18 8\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/mt-2023-0394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/mt-2023-0394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Numerical analysis of cathodic protection of a Q355ND frame in a shallow water subsea Christmas tree
This study develops a 3D model of a Christmas tree using cathodic protection technology and conducts numerical simulations on the Q355ND framework of a shallow Christmas tree. The boundary element method is employed for modeling, examining the distribution of protection potentials under varying corrosion layer breakage rates, anode numbers, and positions. The influence of sacrificial anode parameters on the cathodic protection effect of the Christmas tree is also investigated. The findings reveal that when the breakage rate of the anticorrosion layer reaches 35 % during Christmas tree operation, the sacrificial anode fails to provide complete protection. However, if the coating breakage rate is 10 %, reducing the number of anodes by six can still achieve a protection potential of −850 mV. Thus, it is imperative for Christmas trees to maintain a corrosion protection layer breakage rate below 35 %. Beyond this threshold, sacrificial anodes exhibit minimal effectiveness in preserving their integrity.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.