{"title":"入口几何形状对异形孔薄膜冷却效果的影响","authors":"Hanlin Wang, Lesley M. Wright","doi":"10.2514/1.t6898","DOIUrl":null,"url":null,"abstract":"Modern gas turbine engines require a sophisticated cooling system design to achieve higher power output and efficiency. This study investigates the potential effect of noncylindrical inlet geometries on the performance of laid-back, fan-shaped film-cooling holes using the pressure-sensitive paint measurement technique on a flat plate. On the basis of a common pattern of outlet geometry, racetrack-shaped inlet geometries with aspect ratios of 2:1 and 4:1 were tested along with traditional cylindrical inlets. The coolant flow conditions range from [Formula: see text] = 0.3–1.5 and DR = 1 and 2. The mainstream turbulence intensity is held at 6%. Test results show that the shaped inlets provide a higher area-averaged film-cooling effectiveness over the cylindrical inlet using the same amount of coolant. For the 2:1 inlet, an advantage of 20% higher effectiveness could be maintained for DR = 1, while for DR = 2 this advantage is reduced to 10%. For the 4:1 inlet, when the coolant momentum flux ratio [Formula: see text] < 0.5, a similar or slightly higher improvement can be obtained, but when [Formula: see text] > 1, the advantage diminishes with the growing I to approximately 5%, at [Formula: see text] = 2.25. Regarding discharge coefficients, the 2:1 inlet geometry is similar to the cylindrical inlet. For the 4:1 inlet, it is 2–5% lower or nearly equivalent.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"24 13","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Inlet Geometry on Film-Cooling Effectiveness from Shaped Holes\",\"authors\":\"Hanlin Wang, Lesley M. Wright\",\"doi\":\"10.2514/1.t6898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern gas turbine engines require a sophisticated cooling system design to achieve higher power output and efficiency. This study investigates the potential effect of noncylindrical inlet geometries on the performance of laid-back, fan-shaped film-cooling holes using the pressure-sensitive paint measurement technique on a flat plate. On the basis of a common pattern of outlet geometry, racetrack-shaped inlet geometries with aspect ratios of 2:1 and 4:1 were tested along with traditional cylindrical inlets. The coolant flow conditions range from [Formula: see text] = 0.3–1.5 and DR = 1 and 2. The mainstream turbulence intensity is held at 6%. Test results show that the shaped inlets provide a higher area-averaged film-cooling effectiveness over the cylindrical inlet using the same amount of coolant. For the 2:1 inlet, an advantage of 20% higher effectiveness could be maintained for DR = 1, while for DR = 2 this advantage is reduced to 10%. For the 4:1 inlet, when the coolant momentum flux ratio [Formula: see text] < 0.5, a similar or slightly higher improvement can be obtained, but when [Formula: see text] > 1, the advantage diminishes with the growing I to approximately 5%, at [Formula: see text] = 2.25. Regarding discharge coefficients, the 2:1 inlet geometry is similar to the cylindrical inlet. For the 4:1 inlet, it is 2–5% lower or nearly equivalent.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"24 13\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6898\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6898","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
现代燃气涡轮发动机需要复杂的冷却系统设计,以实现更高的功率输出和效率。本研究利用平板上的压敏涂料测量技术,研究了非圆柱形进气道几何形状对平铺式扇形薄膜冷却孔性能的潜在影响。在常见的出口几何形状基础上,测试了纵横比为 2:1 和 4:1 的赛道形入口几何形状以及传统的圆柱形入口。冷却剂流动条件为[公式:见正文] = 0.3-1.5 和 DR = 1 和 2。主流湍流强度保持在 6%。测试结果表明,在使用相同冷却剂量的情况下,异形进气口比圆柱形进气口具有更高的面积平均膜冷却效果。对于 2:1 的进气口,在 DR = 1 的情况下,可以保持高出 20% 的效率优势,而在 DR = 2 的情况下,这一优势降低到 10%。对于 4:1 进气口,当冷却剂动量通量比[计算公式:见正文]为 1 时,随着 I 的增大,[计算公式:见正文]= 2.25 时的优势减小到约 5%。关于排出系数,2:1 进气口的几何形状与圆柱形进气口相似。对于 4:1 的进气口,则低 2-5%,或几乎相等。
Effect of Inlet Geometry on Film-Cooling Effectiveness from Shaped Holes
Modern gas turbine engines require a sophisticated cooling system design to achieve higher power output and efficiency. This study investigates the potential effect of noncylindrical inlet geometries on the performance of laid-back, fan-shaped film-cooling holes using the pressure-sensitive paint measurement technique on a flat plate. On the basis of a common pattern of outlet geometry, racetrack-shaped inlet geometries with aspect ratios of 2:1 and 4:1 were tested along with traditional cylindrical inlets. The coolant flow conditions range from [Formula: see text] = 0.3–1.5 and DR = 1 and 2. The mainstream turbulence intensity is held at 6%. Test results show that the shaped inlets provide a higher area-averaged film-cooling effectiveness over the cylindrical inlet using the same amount of coolant. For the 2:1 inlet, an advantage of 20% higher effectiveness could be maintained for DR = 1, while for DR = 2 this advantage is reduced to 10%. For the 4:1 inlet, when the coolant momentum flux ratio [Formula: see text] < 0.5, a similar or slightly higher improvement can be obtained, but when [Formula: see text] > 1, the advantage diminishes with the growing I to approximately 5%, at [Formula: see text] = 2.25. Regarding discharge coefficients, the 2:1 inlet geometry is similar to the cylindrical inlet. For the 4:1 inlet, it is 2–5% lower or nearly equivalent.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.