{"title":"基于核主成分分析和最小平方支持向量机的刀具磨损预测","authors":"Kangping Gao, Xinxin Xu, Shengjie Jiao","doi":"10.1088/1361-6501/ad633c","DOIUrl":null,"url":null,"abstract":"\n To accurately predict the amount of tool wear in the machining process, a monitoring model of tool wear based on multi-sensor information feature fusion is proposed. First, by collecting the cutting force, vibration, and acoustic emission signals of the tool during the whole life cycle, the multi-domain characteristics of the signal are extracted; then, kernel principal component analysis is used to reduce the dimensionality of the extracted data, and the principal components whose cumulative contribution ratio exceeds 85% are obtained. The redundant features with little correlation with tool wear were removed from the feature vectors to generate the fusion features. Finally, the fusion features are input into the least squares support vector machine model optimized by particle swarm algorithm for regression prediction of tool wear. The non-linear mapping relationship between the physical signal and the tool wear is discovered, which effectively realizes the prediction of the tool wear. Compared with the existing tool wear prediction methods, the method proposed has higher prediction accuracy.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"38 7","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tool wear prediction based on kernel principal component analysis and least square support vector machine\",\"authors\":\"Kangping Gao, Xinxin Xu, Shengjie Jiao\",\"doi\":\"10.1088/1361-6501/ad633c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To accurately predict the amount of tool wear in the machining process, a monitoring model of tool wear based on multi-sensor information feature fusion is proposed. First, by collecting the cutting force, vibration, and acoustic emission signals of the tool during the whole life cycle, the multi-domain characteristics of the signal are extracted; then, kernel principal component analysis is used to reduce the dimensionality of the extracted data, and the principal components whose cumulative contribution ratio exceeds 85% are obtained. The redundant features with little correlation with tool wear were removed from the feature vectors to generate the fusion features. Finally, the fusion features are input into the least squares support vector machine model optimized by particle swarm algorithm for regression prediction of tool wear. The non-linear mapping relationship between the physical signal and the tool wear is discovered, which effectively realizes the prediction of the tool wear. Compared with the existing tool wear prediction methods, the method proposed has higher prediction accuracy.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"38 7\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6501/ad633c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6501/ad633c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Tool wear prediction based on kernel principal component analysis and least square support vector machine
To accurately predict the amount of tool wear in the machining process, a monitoring model of tool wear based on multi-sensor information feature fusion is proposed. First, by collecting the cutting force, vibration, and acoustic emission signals of the tool during the whole life cycle, the multi-domain characteristics of the signal are extracted; then, kernel principal component analysis is used to reduce the dimensionality of the extracted data, and the principal components whose cumulative contribution ratio exceeds 85% are obtained. The redundant features with little correlation with tool wear were removed from the feature vectors to generate the fusion features. Finally, the fusion features are input into the least squares support vector machine model optimized by particle swarm algorithm for regression prediction of tool wear. The non-linear mapping relationship between the physical signal and the tool wear is discovered, which effectively realizes the prediction of the tool wear. Compared with the existing tool wear prediction methods, the method proposed has higher prediction accuracy.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.