Francesco Bour, Jean-René Duclère, Pierre Carles, Sébastien Chenu, Mathieu Allix, Jean-Louis Auguste, Georges Humbert, Gaëlle Delaizir
{"title":"掺杂 Ni2+ 的 Zn(GaxAl1-x)2O4 基玻璃陶瓷的宽带发光特性","authors":"Francesco Bour, Jean-René Duclère, Pierre Carles, Sébastien Chenu, Mathieu Allix, Jean-Louis Auguste, Georges Humbert, Gaëlle Delaizir","doi":"10.1111/ijag.16681","DOIUrl":null,"url":null,"abstract":"<p>Ni<sup>2+</sup>-doped glass–ceramics containing Zn(Ga<i><sub>x</sub></i>Al<i><sub>x</sub></i><sub>−1</sub>)<sub>2</sub>O<sub>4</sub> crystals were successfully synthetized using both parent glass crystallization (Technique 1) and a direct doping method also called “frozen sorbet” (Technique 2) to get a ZnGa<sub>2</sub>O<sub>4</sub> crystal/glass composite. The frozen sorbet technique allows the survival of ∼10 nm crystalline particles. Both materials are further crystallized near their respective temperature of crystallization to get glass–ceramics with the stabilization of Zn(Ga<i><sub>x</sub></i>Al<i><sub>x</sub></i><sub>−1</sub>)<sub>2</sub>O<sub>4</sub> crystals. Although these two materials exhibit the same glass transition temperature, a shift in the crystallization temperature is observed. The glass–ceramics are transparent in the near infrared range, and the Ni<sup>2+</sup> doping provides a broadband emission centered around 1300 nm with a full width at half-maximum (FWHM) equal to 228 nm. The structure, microstructure, and thermal and optical properties of these materials are discussed in the present study.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"15 4","pages":"440-450"},"PeriodicalIF":2.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Broadband luminescence of Ni2+-doped Zn(GaxAl1−x)2O4-based glass–ceramics\",\"authors\":\"Francesco Bour, Jean-René Duclère, Pierre Carles, Sébastien Chenu, Mathieu Allix, Jean-Louis Auguste, Georges Humbert, Gaëlle Delaizir\",\"doi\":\"10.1111/ijag.16681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ni<sup>2+</sup>-doped glass–ceramics containing Zn(Ga<i><sub>x</sub></i>Al<i><sub>x</sub></i><sub>−1</sub>)<sub>2</sub>O<sub>4</sub> crystals were successfully synthetized using both parent glass crystallization (Technique 1) and a direct doping method also called “frozen sorbet” (Technique 2) to get a ZnGa<sub>2</sub>O<sub>4</sub> crystal/glass composite. The frozen sorbet technique allows the survival of ∼10 nm crystalline particles. Both materials are further crystallized near their respective temperature of crystallization to get glass–ceramics with the stabilization of Zn(Ga<i><sub>x</sub></i>Al<i><sub>x</sub></i><sub>−1</sub>)<sub>2</sub>O<sub>4</sub> crystals. Although these two materials exhibit the same glass transition temperature, a shift in the crystallization temperature is observed. The glass–ceramics are transparent in the near infrared range, and the Ni<sup>2+</sup> doping provides a broadband emission centered around 1300 nm with a full width at half-maximum (FWHM) equal to 228 nm. The structure, microstructure, and thermal and optical properties of these materials are discussed in the present study.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"15 4\",\"pages\":\"440-450\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16681\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16681","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Broadband luminescence of Ni2+-doped Zn(GaxAl1−x)2O4-based glass–ceramics
Ni2+-doped glass–ceramics containing Zn(GaxAlx−1)2O4 crystals were successfully synthetized using both parent glass crystallization (Technique 1) and a direct doping method also called “frozen sorbet” (Technique 2) to get a ZnGa2O4 crystal/glass composite. The frozen sorbet technique allows the survival of ∼10 nm crystalline particles. Both materials are further crystallized near their respective temperature of crystallization to get glass–ceramics with the stabilization of Zn(GaxAlx−1)2O4 crystals. Although these two materials exhibit the same glass transition temperature, a shift in the crystallization temperature is observed. The glass–ceramics are transparent in the near infrared range, and the Ni2+ doping provides a broadband emission centered around 1300 nm with a full width at half-maximum (FWHM) equal to 228 nm. The structure, microstructure, and thermal and optical properties of these materials are discussed in the present study.
期刊介绍:
The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.