Tao Liu, Tiantian Dong, Mengying Wang, Xiaofan Du, Youlong Sun, Gaojie Xu, Huanrui Zhang, Shanmu Dong, Guanglei Cui
{"title":"用于高压锂离子电池的回收微型硅负极","authors":"Tao Liu, Tiantian Dong, Mengying Wang, Xiaofan Du, Youlong Sun, Gaojie Xu, Huanrui Zhang, Shanmu Dong, Guanglei Cui","doi":"10.1038/s41893-024-01393-9","DOIUrl":null,"url":null,"abstract":"Silicon (Si) anode is widely viewed as a game changer for lithium-ion batteries (LIBs) due to its much higher capacity than the prevalent graphite and availability in sufficient quantity and quality. Most Si anode designs are nanostructured to overcome the large volume variation during cycling, but this comes at the expense of manufacturability, cost advantage and other merits. Here we demonstrate that micro-sized Si (μm-Si) recycled from photovoltaic waste can serve as anode material, exhibiting an average Coulombic efficiency of 99.94% and retaining 83.13% of its initial capacity after 200 cycles through the rational electrolyte design. With a formulated ether electrolyte of 3 M LiPF6 in 1,3-dioxane (DX)/1,2-diethoxyethane (DEE), NCM811||μm-Si pouch cells survive 80 cycles and deliver an energy density of 340.7 Wh kg−1 even under harsh conditions. Responsible for the impressive electrochemical performance is a unique SEI chemistry where the flexible polymer-dominated outer layer well holds fractured Si particles together and the rigid Li2O/LiF-rich inner layer serves to facilitate ionic conduction and suppress side reactions. Our work not only suggests a more sustainable supply source for Si particles but also addresses the major problems facing μm-Si anode materials. Silicon (Si) has emerged as a promising next-generation anode material. Here the authors recycle photovoltaic waste for micro-sized Si that can pair with high-voltage cathode for high-performance Li-ion pouch cells.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"7 8","pages":"1057-1066"},"PeriodicalIF":25.7000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recycled micro-sized silicon anode for high-voltage lithium-ion batteries\",\"authors\":\"Tao Liu, Tiantian Dong, Mengying Wang, Xiaofan Du, Youlong Sun, Gaojie Xu, Huanrui Zhang, Shanmu Dong, Guanglei Cui\",\"doi\":\"10.1038/s41893-024-01393-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon (Si) anode is widely viewed as a game changer for lithium-ion batteries (LIBs) due to its much higher capacity than the prevalent graphite and availability in sufficient quantity and quality. Most Si anode designs are nanostructured to overcome the large volume variation during cycling, but this comes at the expense of manufacturability, cost advantage and other merits. Here we demonstrate that micro-sized Si (μm-Si) recycled from photovoltaic waste can serve as anode material, exhibiting an average Coulombic efficiency of 99.94% and retaining 83.13% of its initial capacity after 200 cycles through the rational electrolyte design. With a formulated ether electrolyte of 3 M LiPF6 in 1,3-dioxane (DX)/1,2-diethoxyethane (DEE), NCM811||μm-Si pouch cells survive 80 cycles and deliver an energy density of 340.7 Wh kg−1 even under harsh conditions. Responsible for the impressive electrochemical performance is a unique SEI chemistry where the flexible polymer-dominated outer layer well holds fractured Si particles together and the rigid Li2O/LiF-rich inner layer serves to facilitate ionic conduction and suppress side reactions. Our work not only suggests a more sustainable supply source for Si particles but also addresses the major problems facing μm-Si anode materials. Silicon (Si) has emerged as a promising next-generation anode material. Here the authors recycle photovoltaic waste for micro-sized Si that can pair with high-voltage cathode for high-performance Li-ion pouch cells.\",\"PeriodicalId\":19056,\"journal\":{\"name\":\"Nature Sustainability\",\"volume\":\"7 8\",\"pages\":\"1057-1066\"},\"PeriodicalIF\":25.7000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Sustainability\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s41893-024-01393-9\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Sustainability","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s41893-024-01393-9","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Recycled micro-sized silicon anode for high-voltage lithium-ion batteries
Silicon (Si) anode is widely viewed as a game changer for lithium-ion batteries (LIBs) due to its much higher capacity than the prevalent graphite and availability in sufficient quantity and quality. Most Si anode designs are nanostructured to overcome the large volume variation during cycling, but this comes at the expense of manufacturability, cost advantage and other merits. Here we demonstrate that micro-sized Si (μm-Si) recycled from photovoltaic waste can serve as anode material, exhibiting an average Coulombic efficiency of 99.94% and retaining 83.13% of its initial capacity after 200 cycles through the rational electrolyte design. With a formulated ether electrolyte of 3 M LiPF6 in 1,3-dioxane (DX)/1,2-diethoxyethane (DEE), NCM811||μm-Si pouch cells survive 80 cycles and deliver an energy density of 340.7 Wh kg−1 even under harsh conditions. Responsible for the impressive electrochemical performance is a unique SEI chemistry where the flexible polymer-dominated outer layer well holds fractured Si particles together and the rigid Li2O/LiF-rich inner layer serves to facilitate ionic conduction and suppress side reactions. Our work not only suggests a more sustainable supply source for Si particles but also addresses the major problems facing μm-Si anode materials. Silicon (Si) has emerged as a promising next-generation anode material. Here the authors recycle photovoltaic waste for micro-sized Si that can pair with high-voltage cathode for high-performance Li-ion pouch cells.
期刊介绍:
Nature Sustainability aims to facilitate cross-disciplinary dialogues and bring together research fields that contribute to understanding how we organize our lives in a finite world and the impacts of our actions.
Nature Sustainability will not only publish fundamental research but also significant investigations into policies and solutions for ensuring human well-being now and in the future.Its ultimate goal is to address the greatest challenges of our time.