{"title":"利用时空分析探索地震参数与大气参数之间的联系:对地震预测的影响","authors":"M. Senthil Kumar, N. Venkatanathan","doi":"10.1007/s00024-024-03533-w","DOIUrl":null,"url":null,"abstract":"<div><p>Although many earthquake precursors have been proposed to forecast earthquakes, even in this modern era, short-term earthquake forecasting remains challenging due to the heterogeneous nature of the earthquake’s occurrence. This study mainly focused on how the impending earthquake influences pre-earthquake scenarios using minor shocks and further confirmed by atmospheric parameters such as Outgoing Longwave Radiation (OLR). The Himalayan belt is one of the most at-risk areas during a continental-continental collision. The spatiotemporal analysis of the pre-earthquake scenario is carried out to identify the most vulnerable seismic risk zone and to forecast the probable magnitude of the earthquake. From the analysis, it is found that the accumulation of strain energy focussing near the epicenter of the impending earthquake. Furthermore, the study also revealed that abnormal changes in atmospheric parameters observed several days before an earthquake, which could serve as a precursor of seismic activity. On certain days, the anomalous OLR due to the radon gas emanation was observed at the different locations around the epicenter of the impending earthquakes. This phenomenon probably due to the transfer of accumulated strain from one side of the fault to other side of the fault through epicenter of the impending earthquake. This gives vital clue in determining the possible epicenter of the earthquake. The statistical analysis of minor shocks associated with significant earthquakes made it possible to determine the magnitude and depth range of minor shocks that may trigger the nucleation process for major earthquakes. The magnitude and depth ranges of microshocks involved in the nucleation process differed among fault types. This research highlights the importance of monitoring seismic and atmospheric activity to improve earthquake forecasting and preparedness. Hence, it is possible to identify the most vulnerable seismic zone, location of the epicenter and probable magnitude spatio-temporal analysis.</p></div>","PeriodicalId":21078,"journal":{"name":"pure and applied geophysics","volume":"181 8","pages":"2447 - 2474"},"PeriodicalIF":1.9000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Link Between Seismic and Atmospheric Parameters Using Spatio Temporal Analysis: Implications for Earthquake Forecasting\",\"authors\":\"M. Senthil Kumar, N. Venkatanathan\",\"doi\":\"10.1007/s00024-024-03533-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Although many earthquake precursors have been proposed to forecast earthquakes, even in this modern era, short-term earthquake forecasting remains challenging due to the heterogeneous nature of the earthquake’s occurrence. This study mainly focused on how the impending earthquake influences pre-earthquake scenarios using minor shocks and further confirmed by atmospheric parameters such as Outgoing Longwave Radiation (OLR). The Himalayan belt is one of the most at-risk areas during a continental-continental collision. The spatiotemporal analysis of the pre-earthquake scenario is carried out to identify the most vulnerable seismic risk zone and to forecast the probable magnitude of the earthquake. From the analysis, it is found that the accumulation of strain energy focussing near the epicenter of the impending earthquake. Furthermore, the study also revealed that abnormal changes in atmospheric parameters observed several days before an earthquake, which could serve as a precursor of seismic activity. On certain days, the anomalous OLR due to the radon gas emanation was observed at the different locations around the epicenter of the impending earthquakes. This phenomenon probably due to the transfer of accumulated strain from one side of the fault to other side of the fault through epicenter of the impending earthquake. This gives vital clue in determining the possible epicenter of the earthquake. The statistical analysis of minor shocks associated with significant earthquakes made it possible to determine the magnitude and depth range of minor shocks that may trigger the nucleation process for major earthquakes. The magnitude and depth ranges of microshocks involved in the nucleation process differed among fault types. This research highlights the importance of monitoring seismic and atmospheric activity to improve earthquake forecasting and preparedness. Hence, it is possible to identify the most vulnerable seismic zone, location of the epicenter and probable magnitude spatio-temporal analysis.</p></div>\",\"PeriodicalId\":21078,\"journal\":{\"name\":\"pure and applied geophysics\",\"volume\":\"181 8\",\"pages\":\"2447 - 2474\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"pure and applied geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00024-024-03533-w\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"pure and applied geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00024-024-03533-w","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Exploring the Link Between Seismic and Atmospheric Parameters Using Spatio Temporal Analysis: Implications for Earthquake Forecasting
Although many earthquake precursors have been proposed to forecast earthquakes, even in this modern era, short-term earthquake forecasting remains challenging due to the heterogeneous nature of the earthquake’s occurrence. This study mainly focused on how the impending earthquake influences pre-earthquake scenarios using minor shocks and further confirmed by atmospheric parameters such as Outgoing Longwave Radiation (OLR). The Himalayan belt is one of the most at-risk areas during a continental-continental collision. The spatiotemporal analysis of the pre-earthquake scenario is carried out to identify the most vulnerable seismic risk zone and to forecast the probable magnitude of the earthquake. From the analysis, it is found that the accumulation of strain energy focussing near the epicenter of the impending earthquake. Furthermore, the study also revealed that abnormal changes in atmospheric parameters observed several days before an earthquake, which could serve as a precursor of seismic activity. On certain days, the anomalous OLR due to the radon gas emanation was observed at the different locations around the epicenter of the impending earthquakes. This phenomenon probably due to the transfer of accumulated strain from one side of the fault to other side of the fault through epicenter of the impending earthquake. This gives vital clue in determining the possible epicenter of the earthquake. The statistical analysis of minor shocks associated with significant earthquakes made it possible to determine the magnitude and depth range of minor shocks that may trigger the nucleation process for major earthquakes. The magnitude and depth ranges of microshocks involved in the nucleation process differed among fault types. This research highlights the importance of monitoring seismic and atmospheric activity to improve earthquake forecasting and preparedness. Hence, it is possible to identify the most vulnerable seismic zone, location of the epicenter and probable magnitude spatio-temporal analysis.
期刊介绍:
pure and applied geophysics (pageoph), a continuation of the journal "Geofisica pura e applicata", publishes original scientific contributions in the fields of solid Earth, atmospheric and oceanic sciences. Regular and special issues feature thought-provoking reports on active areas of current research and state-of-the-art surveys.
Long running journal, founded in 1939 as Geofisica pura e applicata
Publishes peer-reviewed original scientific contributions and state-of-the-art surveys in solid earth and atmospheric sciences
Features thought-provoking reports on active areas of current research and is a major source for publications on tsunami research
Coverage extends to research topics in oceanic sciences
See Instructions for Authors on the right hand side.