Xiang Li, Jiangang Sun, Lei Xu, Zhen Wang, Lifu Cui, Bin Liang
{"title":"通过结构子尺度实验研究西藏传统古建筑的抗震脆弱性","authors":"Xiang Li, Jiangang Sun, Lei Xu, Zhen Wang, Lifu Cui, Bin Liang","doi":"10.1007/s10518-024-01962-5","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional ancient Tibetan buildings (TATBs) date back hundreds of years. The seismic performance of TATBs constructed with stones and mud was analyzed by utilizing structural subscale features (materials, walls, and structures). The key to load-bearing in TATBs is the three-leaf stone wall. Based on the mechanical properties of materials, compression tests and quasistatic static tests of walls, this paper confirms that the seismic resistance capacity of the three-leaf stone wall of TATBs is unable to meet Chinese standards. The aims of this study are to present the dynamic behavior of TATBs by shaking table tests. According to the experimental data, the transcendence intensity magnification calculation method is modified to calculate the seismic vulnerability of TATBs. The results show that when the peak acceleration of ground motion is 1.042 m/s<sup>2</sup>, 1.598 m/s<sup>2</sup> and 2.881 m/s<sup>2</sup>, TATBs undergo slight damage, moderate damage, and severe damage, respectively.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"22 11","pages":"5639 - 5672"},"PeriodicalIF":3.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the seismic vulnerability of traditional ancient Tibetan buildings via structural subscaling experiments\",\"authors\":\"Xiang Li, Jiangang Sun, Lei Xu, Zhen Wang, Lifu Cui, Bin Liang\",\"doi\":\"10.1007/s10518-024-01962-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Traditional ancient Tibetan buildings (TATBs) date back hundreds of years. The seismic performance of TATBs constructed with stones and mud was analyzed by utilizing structural subscale features (materials, walls, and structures). The key to load-bearing in TATBs is the three-leaf stone wall. Based on the mechanical properties of materials, compression tests and quasistatic static tests of walls, this paper confirms that the seismic resistance capacity of the three-leaf stone wall of TATBs is unable to meet Chinese standards. The aims of this study are to present the dynamic behavior of TATBs by shaking table tests. According to the experimental data, the transcendence intensity magnification calculation method is modified to calculate the seismic vulnerability of TATBs. The results show that when the peak acceleration of ground motion is 1.042 m/s<sup>2</sup>, 1.598 m/s<sup>2</sup> and 2.881 m/s<sup>2</sup>, TATBs undergo slight damage, moderate damage, and severe damage, respectively.</p></div>\",\"PeriodicalId\":9364,\"journal\":{\"name\":\"Bulletin of Earthquake Engineering\",\"volume\":\"22 11\",\"pages\":\"5639 - 5672\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Earthquake Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10518-024-01962-5\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-024-01962-5","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Investigating the seismic vulnerability of traditional ancient Tibetan buildings via structural subscaling experiments
Traditional ancient Tibetan buildings (TATBs) date back hundreds of years. The seismic performance of TATBs constructed with stones and mud was analyzed by utilizing structural subscale features (materials, walls, and structures). The key to load-bearing in TATBs is the three-leaf stone wall. Based on the mechanical properties of materials, compression tests and quasistatic static tests of walls, this paper confirms that the seismic resistance capacity of the three-leaf stone wall of TATBs is unable to meet Chinese standards. The aims of this study are to present the dynamic behavior of TATBs by shaking table tests. According to the experimental data, the transcendence intensity magnification calculation method is modified to calculate the seismic vulnerability of TATBs. The results show that when the peak acceleration of ground motion is 1.042 m/s2, 1.598 m/s2 and 2.881 m/s2, TATBs undergo slight damage, moderate damage, and severe damage, respectively.
期刊介绍:
Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings.
Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more.
This is the Official Publication of the European Association for Earthquake Engineering.