利用 LTNE 模型对多孔介质中带有化学反应的双扩散对流进行线性和弱非线性分析

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-07-16 DOI:10.1002/htj.23121
Chirnam Ramchandraiah, Naikoti Kishan, J. SharathKumar Reddy, Ragoju Ravi
{"title":"利用 LTNE 模型对多孔介质中带有化学反应的双扩散对流进行线性和弱非线性分析","authors":"Chirnam Ramchandraiah,&nbsp;Naikoti Kishan,&nbsp;J. SharathKumar Reddy,&nbsp;Ragoju Ravi","doi":"10.1002/htj.23121","DOIUrl":null,"url":null,"abstract":"<p>The onset of convection in a horizontal porous layer with chemical reaction and local thermal nonequilibrium is investigated. The nondimensional governing equations have been solved using the normal mode technique, which results in an eigenvalue problem. The analytical expressions for both stationary and oscillatory Rayleigh numbers are obtained. The effect of different parameters has been investigated and presented. The amplitude equation is derived using weakly nonlinear theory. Nusselt number is calculated using an amplitude equation to investigate heat transport. When modeling a fluid-saturated porous medium, previous research on double-diffusive convection has uniformly operated under the assumption of local thermal equilibrium (LTE) between the fluid and solid phases at all points within the medium. This standard practice assumes a minimal temperature gradient between the phases at any given location. However, in practical scenarios involving high-speed flows or significant temperature differentials between the fluid and solid phases, the LTE assumption proves insufficient.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4150-4168"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear and weakly nonlinear analyses of double-diffusive convection in porous media with chemical reaction using LTNE model\",\"authors\":\"Chirnam Ramchandraiah,&nbsp;Naikoti Kishan,&nbsp;J. SharathKumar Reddy,&nbsp;Ragoju Ravi\",\"doi\":\"10.1002/htj.23121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The onset of convection in a horizontal porous layer with chemical reaction and local thermal nonequilibrium is investigated. The nondimensional governing equations have been solved using the normal mode technique, which results in an eigenvalue problem. The analytical expressions for both stationary and oscillatory Rayleigh numbers are obtained. The effect of different parameters has been investigated and presented. The amplitude equation is derived using weakly nonlinear theory. Nusselt number is calculated using an amplitude equation to investigate heat transport. When modeling a fluid-saturated porous medium, previous research on double-diffusive convection has uniformly operated under the assumption of local thermal equilibrium (LTE) between the fluid and solid phases at all points within the medium. This standard practice assumes a minimal temperature gradient between the phases at any given location. However, in practical scenarios involving high-speed flows or significant temperature differentials between the fluid and solid phases, the LTE assumption proves insufficient.</p>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"53 8\",\"pages\":\"4150-4168\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有化学反应和局部热非平衡的水平多孔层中对流的发生。利用法向模态技术求解了非一维控制方程,从而得到了一个特征值问题。得到了静态和振荡雷利数的解析表达式。研究并提出了不同参数的影响。利用弱非线性理论推导出振幅方程。使用振幅方程计算努塞尔特数,以研究热量传输。在对流体饱和多孔介质进行建模时,以往关于双扩散对流的研究都是在介质内所有点的流体和固相之间都达到局部热平衡(LTE)的假设下进行的。这种标准做法假定在任何给定位置,两相之间的温度梯度最小。然而,在涉及高速流动或流体与固相之间存在显著温差的实际情况下,LTE 假设证明是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear and weakly nonlinear analyses of double-diffusive convection in porous media with chemical reaction using LTNE model

The onset of convection in a horizontal porous layer with chemical reaction and local thermal nonequilibrium is investigated. The nondimensional governing equations have been solved using the normal mode technique, which results in an eigenvalue problem. The analytical expressions for both stationary and oscillatory Rayleigh numbers are obtained. The effect of different parameters has been investigated and presented. The amplitude equation is derived using weakly nonlinear theory. Nusselt number is calculated using an amplitude equation to investigate heat transport. When modeling a fluid-saturated porous medium, previous research on double-diffusive convection has uniformly operated under the assumption of local thermal equilibrium (LTE) between the fluid and solid phases at all points within the medium. This standard practice assumes a minimal temperature gradient between the phases at any given location. However, in practical scenarios involving high-speed flows or significant temperature differentials between the fluid and solid phases, the LTE assumption proves insufficient.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信