大自然的建筑师:细胞外聚合物物质及其多种应用的全面回顾

Anusha Atmakuri, Bhoomika Yadav, Bhagyashree Tiwari, Patrick Drogui, R. D. Tyagi, Jonathan W. C. Wong
{"title":"大自然的建筑师:细胞外聚合物物质及其多种应用的全面回顾","authors":"Anusha Atmakuri,&nbsp;Bhoomika Yadav,&nbsp;Bhagyashree Tiwari,&nbsp;Patrick Drogui,&nbsp;R. D. Tyagi,&nbsp;Jonathan W. C. Wong","doi":"10.1007/s42768-024-00205-2","DOIUrl":null,"url":null,"abstract":"<div><p>Extracellular polymeric substances (EPSs) play a crucial role in various applications, especially in wastewater treatment. This review explores the importance of EPS in modern treatment methods, emphasizing its organic polymeric nature and properties that aid in effective pollutant removal and resource conservation. The study focuses on biological strategies utilizing microbial and bacterial communities, as well as electrolyte precipitate systems containing various components such as uronic acids, proteins, and carbohydrates that are essential for treatment processes. This review also describes the complex mechanisms regulating EPS biosynthesis, highlighting the impact of factors such as temperature, light intensity, and carbon to nitrogen ratio on EPS production. These findings emphasizes the influence of carbon supply and nitrogen sources on EPS formation, shedding light on the relationship between environmental conditions and EPS synthesis. In addition, this study discusses the significance of EPS extraction techniques for maintaining material integrity. Furthermore, the review explores the broad applications of EPS beyond wastewater treatment, including soil aggregation, pharmaceuticals, the food industry, and sustainable energy generation through EPS-driven microbial fuel cells. Understanding the diverse functions of EPS has the potential to improve environmental practices, mitigate climate change effects, and enhance industrial processes towards sustainability and efficiency. The versatility of EPS underscores its transformative impact on environmental and industrial practices.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":"6 4","pages":"529 - 551"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nature’s architects: a comprehensive review of extracellular polymeric substances and their diverse applications\",\"authors\":\"Anusha Atmakuri,&nbsp;Bhoomika Yadav,&nbsp;Bhagyashree Tiwari,&nbsp;Patrick Drogui,&nbsp;R. D. Tyagi,&nbsp;Jonathan W. C. Wong\",\"doi\":\"10.1007/s42768-024-00205-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extracellular polymeric substances (EPSs) play a crucial role in various applications, especially in wastewater treatment. This review explores the importance of EPS in modern treatment methods, emphasizing its organic polymeric nature and properties that aid in effective pollutant removal and resource conservation. The study focuses on biological strategies utilizing microbial and bacterial communities, as well as electrolyte precipitate systems containing various components such as uronic acids, proteins, and carbohydrates that are essential for treatment processes. This review also describes the complex mechanisms regulating EPS biosynthesis, highlighting the impact of factors such as temperature, light intensity, and carbon to nitrogen ratio on EPS production. These findings emphasizes the influence of carbon supply and nitrogen sources on EPS formation, shedding light on the relationship between environmental conditions and EPS synthesis. In addition, this study discusses the significance of EPS extraction techniques for maintaining material integrity. Furthermore, the review explores the broad applications of EPS beyond wastewater treatment, including soil aggregation, pharmaceuticals, the food industry, and sustainable energy generation through EPS-driven microbial fuel cells. Understanding the diverse functions of EPS has the potential to improve environmental practices, mitigate climate change effects, and enhance industrial processes towards sustainability and efficiency. The versatility of EPS underscores its transformative impact on environmental and industrial practices.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":\"6 4\",\"pages\":\"529 - 551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-024-00205-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-024-00205-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胞外聚合物(EPSs)在各种应用中发挥着至关重要的作用,特别是在废水处理中。本文综述了EPS在现代处理方法中的重要性,强调了其有机聚合物的性质和特性,有助于有效去除污染物和节约资源。该研究的重点是利用微生物和细菌群落的生物策略,以及含有各种成分的电解质沉淀系统,如尿素酸、蛋白质和碳水化合物,这些都是治疗过程所必需的。本文还介绍了EPS合成的复杂调控机制,重点介绍了温度、光照强度、碳氮比等因素对EPS合成的影响。这些发现强调了碳供应和氮源对EPS形成的影响,揭示了环境条件与EPS合成的关系。此外,本研究还讨论了EPS提取技术对保持材料完整性的意义。此外,本文还探讨了EPS在废水处理之外的广泛应用,包括土壤团聚、制药、食品工业以及通过EPS驱动的微生物燃料电池产生可持续能源。了解EPS的各种功能有可能改善环境实践,减轻气候变化的影响,并提高工业过程的可持续性和效率。EPS的多功能性强调了其对环境和工业实践的变革性影响。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nature’s architects: a comprehensive review of extracellular polymeric substances and their diverse applications

Nature’s architects: a comprehensive review of extracellular polymeric substances and their diverse applications

Extracellular polymeric substances (EPSs) play a crucial role in various applications, especially in wastewater treatment. This review explores the importance of EPS in modern treatment methods, emphasizing its organic polymeric nature and properties that aid in effective pollutant removal and resource conservation. The study focuses on biological strategies utilizing microbial and bacterial communities, as well as electrolyte precipitate systems containing various components such as uronic acids, proteins, and carbohydrates that are essential for treatment processes. This review also describes the complex mechanisms regulating EPS biosynthesis, highlighting the impact of factors such as temperature, light intensity, and carbon to nitrogen ratio on EPS production. These findings emphasizes the influence of carbon supply and nitrogen sources on EPS formation, shedding light on the relationship between environmental conditions and EPS synthesis. In addition, this study discusses the significance of EPS extraction techniques for maintaining material integrity. Furthermore, the review explores the broad applications of EPS beyond wastewater treatment, including soil aggregation, pharmaceuticals, the food industry, and sustainable energy generation through EPS-driven microbial fuel cells. Understanding the diverse functions of EPS has the potential to improve environmental practices, mitigate climate change effects, and enhance industrial processes towards sustainability and efficiency. The versatility of EPS underscores its transformative impact on environmental and industrial practices.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信