IW-NeRF:利用隐式水印保护神经辐射场的版权

Lifeng Chen, Chaoyue Song, Jia Liu, Wenquan Sun, Weina Dong, Fuqiang Di
{"title":"IW-NeRF:利用隐式水印保护神经辐射场的版权","authors":"Lifeng Chen, Chaoyue Song, Jia Liu, Wenquan Sun, Weina Dong, Fuqiang Di","doi":"10.3390/app14146184","DOIUrl":null,"url":null,"abstract":"The neural radiance field (NeRF) has demonstrated significant advancements in computer vision. However, the training process for NeRF models necessitates extensive computational resources and ample training data. In the event of unauthorized usage or theft of the model, substantial losses can be incurred by the copyright holder. To address this concern, we present a novel algorithm that leverages the implicit neural representation (INR) watermarking technique to safeguard NeRF model copyrights. By encoding the watermark information implicitly, we integrate its parameters into the NeRF model’s network using a unique key. Through this key, the copyright owner can extract the embedded watermarks from the NeRF model for ownership verification. To the best of our knowledge, this is the pioneering implementation of INR watermarking for the protection of NeRF model copyrights. Our experimental results substantiate that our approach not only offers robustness and preserves high-quality 3D reconstructions but also ensures the flawless (100%) extraction of watermark content, thereby effectively securing the copyright of the NeRF model.","PeriodicalId":502388,"journal":{"name":"Applied Sciences","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IW-NeRF: Using Implicit Watermarks to Protect the Copyright of Neural Radiation Fields\",\"authors\":\"Lifeng Chen, Chaoyue Song, Jia Liu, Wenquan Sun, Weina Dong, Fuqiang Di\",\"doi\":\"10.3390/app14146184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The neural radiance field (NeRF) has demonstrated significant advancements in computer vision. However, the training process for NeRF models necessitates extensive computational resources and ample training data. In the event of unauthorized usage or theft of the model, substantial losses can be incurred by the copyright holder. To address this concern, we present a novel algorithm that leverages the implicit neural representation (INR) watermarking technique to safeguard NeRF model copyrights. By encoding the watermark information implicitly, we integrate its parameters into the NeRF model’s network using a unique key. Through this key, the copyright owner can extract the embedded watermarks from the NeRF model for ownership verification. To the best of our knowledge, this is the pioneering implementation of INR watermarking for the protection of NeRF model copyrights. Our experimental results substantiate that our approach not only offers robustness and preserves high-quality 3D reconstructions but also ensures the flawless (100%) extraction of watermark content, thereby effectively securing the copyright of the NeRF model.\",\"PeriodicalId\":502388,\"journal\":{\"name\":\"Applied Sciences\",\"volume\":\"4 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/app14146184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/app14146184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经辐射场(NeRF)在计算机视觉领域取得了重大进展。然而,NeRF 模型的训练过程需要大量的计算资源和充足的训练数据。如果模型遭到未经授权的使用或盗窃,版权持有者可能会蒙受巨大损失。为了解决这个问题,我们提出了一种利用隐式神经表示(INR)水印技术来保护 NeRF 模型版权的新型算法。通过对水印信息进行隐式编码,我们使用唯一的密钥将其参数整合到 NeRF 模型的网络中。通过该密钥,版权所有者可以从 NeRF 模型中提取嵌入的水印,以验证所有权。据我们所知,这是用于保护 NeRF 模型版权的 INR 水印技术的首次应用。我们的实验结果证明,我们的方法不仅具有鲁棒性并能保留高质量的三维重建,而且还能确保完美无瑕(100%)地提取水印内容,从而有效保护 NeRF 模型的版权。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IW-NeRF: Using Implicit Watermarks to Protect the Copyright of Neural Radiation Fields
The neural radiance field (NeRF) has demonstrated significant advancements in computer vision. However, the training process for NeRF models necessitates extensive computational resources and ample training data. In the event of unauthorized usage or theft of the model, substantial losses can be incurred by the copyright holder. To address this concern, we present a novel algorithm that leverages the implicit neural representation (INR) watermarking technique to safeguard NeRF model copyrights. By encoding the watermark information implicitly, we integrate its parameters into the NeRF model’s network using a unique key. Through this key, the copyright owner can extract the embedded watermarks from the NeRF model for ownership verification. To the best of our knowledge, this is the pioneering implementation of INR watermarking for the protection of NeRF model copyrights. Our experimental results substantiate that our approach not only offers robustness and preserves high-quality 3D reconstructions but also ensures the flawless (100%) extraction of watermark content, thereby effectively securing the copyright of the NeRF model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信