{"title":"通过 RTM 生产亚麻增强型环氧 Vitrimer 复合材料","authors":"Patricio Martinez, Steven Nutt","doi":"10.3390/jcs8070275","DOIUrl":null,"url":null,"abstract":"Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"3 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flax–Reinforced Vitrimer Epoxy Composites Produced via RTM\",\"authors\":\"Patricio Martinez, Steven Nutt\",\"doi\":\"10.3390/jcs8070275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8070275\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8070275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Flax–Reinforced Vitrimer Epoxy Composites Produced via RTM
Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico