通过 RTM 生产亚麻增强型环氧 Vitrimer 复合材料

IF 3 Q2 MATERIALS SCIENCE, COMPOSITES
Patricio Martinez, Steven Nutt
{"title":"通过 RTM 生产亚麻增强型环氧 Vitrimer 复合材料","authors":"Patricio Martinez, Steven Nutt","doi":"10.3390/jcs8070275","DOIUrl":null,"url":null,"abstract":"Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.","PeriodicalId":15435,"journal":{"name":"Journal of Composites Science","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flax–Reinforced Vitrimer Epoxy Composites Produced via RTM\",\"authors\":\"Patricio Martinez, Steven Nutt\",\"doi\":\"10.3390/jcs8070275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.\",\"PeriodicalId\":15435,\"journal\":{\"name\":\"Journal of Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jcs8070275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8070275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

使用类似的玻璃纤维和亚麻纤维以及玻璃纤维环氧树脂和航空航天级环氧树脂(均为液态成型配方),通过 RTM 生产出复合层压板。通过测量和比较拉伸和弯曲性能,发现玻璃纤维复合材料在弯曲强度和拉伸模量方面表现出同等性能,但拉伸强度略低于参考环氧树脂复合材料。总的来说,玻璃纤维复合材料的拉伸性能优于亚麻纤维复合材料。不过,玻璃纤维和亚麻纤维复合材料的抗弯强度和拉伸模量重量比大致相当。通过基质溶解从复合材料中回收亚麻纤维,二次使用的层压板完全保留了新鲜亚麻纤维的机械性能。最后,对重新成型进行了演示,表明可以使用简单的压制成型来改变复合材料的形状。然而,重新成型为扁平结构会导致局部纤维损坏和机械性能下降。展示的另一种成型方法对纤维的损伤较小,这表明进一步的改进可能会带来一种可行的成型和再成型工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flax–Reinforced Vitrimer Epoxy Composites Produced via RTM
Composite laminates were produced by RTM using similar glass and flax fabrics and both vitrimer epoxy and aerospace-grade epoxy, both formulated for liquid molding. Tensile and flexural properties were measured and compared, revealing that the vitrimer composites exhibited equivalent performance in flexural strength and tensile modulus, but slightly lower performance in tensile strength relative to reference epoxy composites. In general, glass–fiber composites outperformed flax–fiber composites in tension. However, both glass and flax–fiber composites yielded roughly equivalent flexural strength and tensile modulus-to-weight ratios. Flax fabrics were recovered from composites by matrix dissolution, and a second-life laminate showed full retention of the mechanical properties relative to those produced from fresh flax. Finally, a demonstration of re-forming was undertaken, showing that simple press-forming can be used to modify the composite shape. However, re-forming to a flat configuration resulted in local fiber damage and a decrease in mechanical properties. An alternative forming method was demonstrated that resulted in less fiber damage, indicating that further refinements might lead to a viable forming and re-forming process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Composites Science
Journal of Composites Science MATERIALS SCIENCE, COMPOSITES-
CiteScore
5.00
自引率
9.10%
发文量
328
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信