Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz
{"title":"基于脑电图的阿尔茨海默病检测和诊断中的机器学习和深度学习趋势:系统综述","authors":"Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz","doi":"10.3390/eng5030078","DOIUrl":null,"url":null,"abstract":"This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine and Deep Learning Trends in EEG-Based Detection and Diagnosis of Alzheimer’s Disease: A Systematic Review\",\"authors\":\"Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz\",\"doi\":\"10.3390/eng5030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.\",\"PeriodicalId\":502660,\"journal\":{\"name\":\"Eng\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eng\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng5030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eng","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng5030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine and Deep Learning Trends in EEG-Based Detection and Diagnosis of Alzheimer’s Disease: A Systematic Review
This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.