基于脑电图的阿尔茨海默病检测和诊断中的机器学习和深度学习趋势:系统综述

Eng Pub Date : 2024-07-16 DOI:10.3390/eng5030078
Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz
{"title":"基于脑电图的阿尔茨海默病检测和诊断中的机器学习和深度学习趋势:系统综述","authors":"Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz","doi":"10.3390/eng5030078","DOIUrl":null,"url":null,"abstract":"This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.","PeriodicalId":502660,"journal":{"name":"Eng","volume":"3 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine and Deep Learning Trends in EEG-Based Detection and Diagnosis of Alzheimer’s Disease: A Systematic Review\",\"authors\":\"Marcos Aviles, Luz-María Sánchez-Reyes, J. M. Álvarez-Alvarado, J. Rodríguez-Reséndíz\",\"doi\":\"10.3390/eng5030078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.\",\"PeriodicalId\":502660,\"journal\":{\"name\":\"Eng\",\"volume\":\"3 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eng\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/eng5030078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eng","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/eng5030078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用 PRISMA 方法进行了系统性综述,探讨了机器学习和深度学习在利用脑电图诊断和检测阿尔茨海默病方面的应用趋势。本综述涵盖了 2013 年至 2023 年间发表的研究,参考了三个领先的学术数据库:Scopus、Web of Science 和 PubMed。数据库的有效性评估考虑了脑电图电极排列、数据采集方法和参与者人数等基本因素。此外,还重点介绍了研究中使用的数据库的具体特性,包括脑电信号分类、过滤、分割方法和所选特征。最后,对分类算法的性能指标进行了评估,特别是所达到的准确度,从而全面展示了使用这些技术诊断阿尔茨海默病的现状和未来趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine and Deep Learning Trends in EEG-Based Detection and Diagnosis of Alzheimer’s Disease: A Systematic Review
This article presents a systematic review using PRISMA methodology to explore trends in the use of machine and deep learning in diagnosing and detecting Alzheimer’s disease using electroencephalography. This review covers studies published between 2013 and 2023, drawing on three leading academic databases: Scopus, Web of Science, and PubMed. The validity of the databases is evaluated considering essential factors such as the arrangement of EEG electrodes, data acquisition methodologies, and the number of participants. Additionally, the specific properties of the databases used in the research are highlighted, including EEG signal classification, filtering, segmentation approaches, and selected features. Finally, the performance metrics of the classification algorithms are evaluated, especially the accuracy achieved, offering a comprehensive view of the current state and future trends in the use of these technologies for the diagnosis of Alzheimer’s disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eng
Eng
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信