{"title":"使用改进的基于分解的多目标进化算法优化并网分布式资源的调度和管理","authors":"Ghulam Abbas, Zhi Wu, Aamir Ali","doi":"10.1049/gtd2.13221","DOIUrl":null,"url":null,"abstract":"<p>This paper emphasizes the integration of wind and photovoltaic (PV) generation with battery energy storage systems (BESS) in distribution networks (DNs) to enhance grid sustainability, reliability, and flexibility. A novel multi-objective optimization framework is introduced in this study to minimize energy supply costs, emissions, and energy losses while improving voltage deviation (VD) and voltage stability index (VSI). The proposed framework comprising normal boundary intersection (NBI) and decomposition-based evolutionary algorithms (DBEA) determines the optimal siting and sizing of renewable-based distributed resources, considering load demand variations and the intermittency of wind and solar outputs. The comparative analysis establishes that the proposed strategy performs better than many contemporary algorithms, specifically when all the objective functions are optimized simultaneously. The validation of the proposed framework was carried out on the standard IEEE-33 bus test network, which demonstrates significant percentage savings in energy supply costs (49.6%), emission rate (62.2%), and energy loss (92.3%), along with enormous improvements in VSI (91.9%) and VD (99.8953%). The obtained results categorically underline the efficiency, reliability, and robustness of the proposed approach when employed on any complex distribution network comprising multiple renewable energy sources and battery storage systems.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13221","citationCount":"0","resultStr":"{\"title\":\"Optimal scheduling and management of grid-connected distributed resources using improved decomposition-based many-objective evolutionary algorithm\",\"authors\":\"Ghulam Abbas, Zhi Wu, Aamir Ali\",\"doi\":\"10.1049/gtd2.13221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper emphasizes the integration of wind and photovoltaic (PV) generation with battery energy storage systems (BESS) in distribution networks (DNs) to enhance grid sustainability, reliability, and flexibility. A novel multi-objective optimization framework is introduced in this study to minimize energy supply costs, emissions, and energy losses while improving voltage deviation (VD) and voltage stability index (VSI). The proposed framework comprising normal boundary intersection (NBI) and decomposition-based evolutionary algorithms (DBEA) determines the optimal siting and sizing of renewable-based distributed resources, considering load demand variations and the intermittency of wind and solar outputs. The comparative analysis establishes that the proposed strategy performs better than many contemporary algorithms, specifically when all the objective functions are optimized simultaneously. The validation of the proposed framework was carried out on the standard IEEE-33 bus test network, which demonstrates significant percentage savings in energy supply costs (49.6%), emission rate (62.2%), and energy loss (92.3%), along with enormous improvements in VSI (91.9%) and VD (99.8953%). The obtained results categorically underline the efficiency, reliability, and robustness of the proposed approach when employed on any complex distribution network comprising multiple renewable energy sources and battery storage systems.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13221\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13221\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13221","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimal scheduling and management of grid-connected distributed resources using improved decomposition-based many-objective evolutionary algorithm
This paper emphasizes the integration of wind and photovoltaic (PV) generation with battery energy storage systems (BESS) in distribution networks (DNs) to enhance grid sustainability, reliability, and flexibility. A novel multi-objective optimization framework is introduced in this study to minimize energy supply costs, emissions, and energy losses while improving voltage deviation (VD) and voltage stability index (VSI). The proposed framework comprising normal boundary intersection (NBI) and decomposition-based evolutionary algorithms (DBEA) determines the optimal siting and sizing of renewable-based distributed resources, considering load demand variations and the intermittency of wind and solar outputs. The comparative analysis establishes that the proposed strategy performs better than many contemporary algorithms, specifically when all the objective functions are optimized simultaneously. The validation of the proposed framework was carried out on the standard IEEE-33 bus test network, which demonstrates significant percentage savings in energy supply costs (49.6%), emission rate (62.2%), and energy loss (92.3%), along with enormous improvements in VSI (91.9%) and VD (99.8953%). The obtained results categorically underline the efficiency, reliability, and robustness of the proposed approach when employed on any complex distribution network comprising multiple renewable energy sources and battery storage systems.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf