土壤管理方法对温暖干燥条件下中欧葡萄园土壤可培养细菌群和物种多样性的影响

V. Šimanský, M. Kačániová, Martin Juriga, Natália Čmiková, Petra Borotová, Elena Aydın, E. Wójcik-Gront
{"title":"土壤管理方法对温暖干燥条件下中欧葡萄园土壤可培养细菌群和物种多样性的影响","authors":"V. Šimanský, M. Kačániová, Martin Juriga, Natália Čmiková, Petra Borotová, Elena Aydın, E. Wójcik-Gront","doi":"10.3390/horticulturae10070753","DOIUrl":null,"url":null,"abstract":"Sustainable management practices are crucial for the longevity of a monoculture vineyard, especially in the context of a changing climate. Therefore, soil management practices in a vineyard (T: tillage, T+FYM: tillage + farmyard manure, G: grass strips, G+NPK1: grass strips + rational rates of NPK, and G+NPK2: grass strips + higher rates of NPK) were tested in a temperate climate of Slovakia (Central Europe) under specific soil conditions (Rendzic Leptosol). We investigated the influence of continuous cropping on soil chemical properties and microbial communities during the dry and warm year of 2022. The results showed that the soil pH was higher by 19%, 21%, 24% and 13% in T, T+FYM, G and G+NPK1, respectively, compared to G+NPK2. The lowest soil organic matter (SOM) content was found in T, and it increased in the following order: T < T+FYM < G+NPK2 < G+NPK1 < G. Similarly, the lowest abundance of soil culturable bacteriota was found in T and it increased in the following order: T < T+FYM = G+NPK2 < G+NPK1< G. Culturable bacteriota was identified using mass spectrometry (MALDI-TOF MS Biotyper). The most numerous species group was Bacillus, followed by Lactobacillus > Staphylococcus > Pseudomonas. The most frequently isolated species were Bacillus megaterium (16.55%), Bacillus cereus (5.80%), Bacillus thuringiensis (4.87%), and Bacillus simplex (4.37%). Positive relationships between SOM and soil culturable bacteriota were found in the G and G+NPK1 treatments. Temperature also affected soil culturable bacteriota in all soil management practices, most significantly in G+NPK1. Overall, the best scenario for the sustainable management of a productive vineyard is the use of grass strips.","PeriodicalId":507445,"journal":{"name":"Horticulturae","volume":"10 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions\",\"authors\":\"V. Šimanský, M. Kačániová, Martin Juriga, Natália Čmiková, Petra Borotová, Elena Aydın, E. Wójcik-Gront\",\"doi\":\"10.3390/horticulturae10070753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable management practices are crucial for the longevity of a monoculture vineyard, especially in the context of a changing climate. Therefore, soil management practices in a vineyard (T: tillage, T+FYM: tillage + farmyard manure, G: grass strips, G+NPK1: grass strips + rational rates of NPK, and G+NPK2: grass strips + higher rates of NPK) were tested in a temperate climate of Slovakia (Central Europe) under specific soil conditions (Rendzic Leptosol). We investigated the influence of continuous cropping on soil chemical properties and microbial communities during the dry and warm year of 2022. The results showed that the soil pH was higher by 19%, 21%, 24% and 13% in T, T+FYM, G and G+NPK1, respectively, compared to G+NPK2. The lowest soil organic matter (SOM) content was found in T, and it increased in the following order: T < T+FYM < G+NPK2 < G+NPK1 < G. Similarly, the lowest abundance of soil culturable bacteriota was found in T and it increased in the following order: T < T+FYM = G+NPK2 < G+NPK1< G. Culturable bacteriota was identified using mass spectrometry (MALDI-TOF MS Biotyper). The most numerous species group was Bacillus, followed by Lactobacillus > Staphylococcus > Pseudomonas. The most frequently isolated species were Bacillus megaterium (16.55%), Bacillus cereus (5.80%), Bacillus thuringiensis (4.87%), and Bacillus simplex (4.37%). Positive relationships between SOM and soil culturable bacteriota were found in the G and G+NPK1 treatments. Temperature also affected soil culturable bacteriota in all soil management practices, most significantly in G+NPK1. Overall, the best scenario for the sustainable management of a productive vineyard is the use of grass strips.\",\"PeriodicalId\":507445,\"journal\":{\"name\":\"Horticulturae\",\"volume\":\"10 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10070753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/horticulturae10070753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可持续的管理方法对单一种植葡萄园的长寿至关重要,尤其是在气候不断变化的情况下。因此,我们在斯洛伐克(中欧)温带气候的特定土壤条件(Rendzic Leptosol)下测试了葡萄园的土壤管理方法(T:耕作;T+FYM:耕作+农家肥;G:草带;G+NPK1:草带+合理的氮磷钾比例;G+NPK2:草带+更高的氮磷钾比例)。我们研究了在 2022 年干旱温暖的一年中,连续种植对土壤化学特性和微生物群落的影响。结果表明,与 G+NPK2 相比,T、T+FYM、G 和 G+NPK1 的土壤 pH 值分别提高了 19%、21%、24% 和 13%。T 的土壤有机质(SOM)含量最低,并按以下顺序增加:T < T+FYM < G+NPK2 < G+NPK1 < G。同样,土壤可培养菌群的丰度在 T 中最低,并按以下顺序递增:T < T+FYM = G+NPK2 < G+NPK1 < G:可培养的细菌群采用质谱法(MALDI-TOF MS Biotyper)进行鉴定。数量最多的菌群是芽孢杆菌,其次是乳酸杆菌 > 葡萄球菌 > 假单胞菌。最常分离到的菌种是巨大芽孢杆菌(16.55%)、蜡样芽孢杆菌(5.80%)、苏云金芽孢杆菌(4.87%)和单纯芽孢杆菌(4.37%)。在 G 和 G+NPK1 处理中,SOM 与土壤可培养菌群之间呈正相关。温度对所有土壤管理方法中的土壤可培养菌群也有影响,在 G+NPK1 中影响最大。总之,葡萄园可持续管理的最佳方案是使用草带。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions
Sustainable management practices are crucial for the longevity of a monoculture vineyard, especially in the context of a changing climate. Therefore, soil management practices in a vineyard (T: tillage, T+FYM: tillage + farmyard manure, G: grass strips, G+NPK1: grass strips + rational rates of NPK, and G+NPK2: grass strips + higher rates of NPK) were tested in a temperate climate of Slovakia (Central Europe) under specific soil conditions (Rendzic Leptosol). We investigated the influence of continuous cropping on soil chemical properties and microbial communities during the dry and warm year of 2022. The results showed that the soil pH was higher by 19%, 21%, 24% and 13% in T, T+FYM, G and G+NPK1, respectively, compared to G+NPK2. The lowest soil organic matter (SOM) content was found in T, and it increased in the following order: T < T+FYM < G+NPK2 < G+NPK1 < G. Similarly, the lowest abundance of soil culturable bacteriota was found in T and it increased in the following order: T < T+FYM = G+NPK2 < G+NPK1< G. Culturable bacteriota was identified using mass spectrometry (MALDI-TOF MS Biotyper). The most numerous species group was Bacillus, followed by Lactobacillus > Staphylococcus > Pseudomonas. The most frequently isolated species were Bacillus megaterium (16.55%), Bacillus cereus (5.80%), Bacillus thuringiensis (4.87%), and Bacillus simplex (4.37%). Positive relationships between SOM and soil culturable bacteriota were found in the G and G+NPK1 treatments. Temperature also affected soil culturable bacteriota in all soil management practices, most significantly in G+NPK1. Overall, the best scenario for the sustainable management of a productive vineyard is the use of grass strips.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信