Sarah Meehan, Marloes L. Adank, Marc P. van der Schroeff, Jantien L. Vroegop
{"title":"声学变化综合体 (ACC) 测量的系统性综述及其在儿童声音和语音辨别神经能力评估中的适用性","authors":"Sarah Meehan, Marloes L. Adank, Marc P. van der Schroeff, Jantien L. Vroegop","doi":"10.1016/j.heares.2024.109090","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>The acoustic change complex (ACC) is a cortical auditory evoked potential (CAEP) and can be elicited by a change in an otherwise continuous sound. The ACC has been highlighted as a promising tool in the assessment of sound and speech discrimination capacity, and particularly for difficult-to-test populations such as infants with hearing loss, due to the objective nature of ACC measurements. Indeed, there is a pressing need to develop further means to accurately and thoroughly establish the hearing status of children with hearing loss, to help guide hearing interventions in a timely manner. Despite the potential of the ACC method, ACC measurements remain relatively rare in a standard clinical settings. The objective of this study was to perform an up-to-date systematic review on ACC measurements in children, to provide greater clarity and consensus on the possible methodologies, applications, and performance of this technique, and to facilitate its uptake in relevant clinical settings.</p></div><div><h3>Design</h3><p>Original peer-reviewed articles conducting ACC measurements in children (< 18 years). Data were extracted and summarised for: (1) participant characteristics; (2) ACC methods and auditory stimuli; (3) information related to the performance of the ACC technique; (4) ACC measurement outcomes, advantages, and challenges. The systematic review was conducted using PRISMA guidelines for reporting and the methodological quality of included articles was assessed.</p></div><div><h3>Results</h3><p>A total of 28 studies were identified (9 infant studies). Review results show that ACC responses can be measured in infants (from < 3 months), and there is evidence of age-dependency, including increased robustness of the ACC response with increasing childhood age. Clinical applications include the measurement of the neural capacity for speech and non-speech sound discrimination in children with hearing loss, auditory neuropathy spectrum disorder (ANSD) and central auditory processing disorder (CAPD). Additionally, ACCs can be recorded in children with hearing aids, auditory brainstem implants, and cochlear implants, and ACC results may guide hearing intervention/rehabilitation strategies. The review identified that the time taken to perform ACC measurements was often lengthy; the development of more efficient ACC test procedures for children would be beneficial. Comparisons between objective ACC measurements and behavioural measures of sound discrimination showed significant correlations for some, but not all, included studies.</p></div><div><h3>Conclusions</h3><p>ACC measurements of the neural capacity to discriminate between speech and non-speech sounds are feasible in infants and children, and a wide range of possible clinical applications exist, although more time-efficient procedures would be advantageous for clinical uptake. A consideration of age and maturational effects is recommended, and further research is required to investigate the relationship between objective ACC measures and behavioural measures of sound and speech perception for effective clinical implementation.</p></div>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"451 ","pages":"Article 109090"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378595524001436/pdfft?md5=688d4b22fede6c01b1917a49bbc35347&pid=1-s2.0-S0378595524001436-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A systematic review of acoustic change complex (ACC) measurements and applicability in children for the assessment of the neural capacity for sound and speech discrimination\",\"authors\":\"Sarah Meehan, Marloes L. Adank, Marc P. van der Schroeff, Jantien L. Vroegop\",\"doi\":\"10.1016/j.heares.2024.109090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>The acoustic change complex (ACC) is a cortical auditory evoked potential (CAEP) and can be elicited by a change in an otherwise continuous sound. The ACC has been highlighted as a promising tool in the assessment of sound and speech discrimination capacity, and particularly for difficult-to-test populations such as infants with hearing loss, due to the objective nature of ACC measurements. Indeed, there is a pressing need to develop further means to accurately and thoroughly establish the hearing status of children with hearing loss, to help guide hearing interventions in a timely manner. Despite the potential of the ACC method, ACC measurements remain relatively rare in a standard clinical settings. The objective of this study was to perform an up-to-date systematic review on ACC measurements in children, to provide greater clarity and consensus on the possible methodologies, applications, and performance of this technique, and to facilitate its uptake in relevant clinical settings.</p></div><div><h3>Design</h3><p>Original peer-reviewed articles conducting ACC measurements in children (< 18 years). Data were extracted and summarised for: (1) participant characteristics; (2) ACC methods and auditory stimuli; (3) information related to the performance of the ACC technique; (4) ACC measurement outcomes, advantages, and challenges. The systematic review was conducted using PRISMA guidelines for reporting and the methodological quality of included articles was assessed.</p></div><div><h3>Results</h3><p>A total of 28 studies were identified (9 infant studies). Review results show that ACC responses can be measured in infants (from < 3 months), and there is evidence of age-dependency, including increased robustness of the ACC response with increasing childhood age. Clinical applications include the measurement of the neural capacity for speech and non-speech sound discrimination in children with hearing loss, auditory neuropathy spectrum disorder (ANSD) and central auditory processing disorder (CAPD). Additionally, ACCs can be recorded in children with hearing aids, auditory brainstem implants, and cochlear implants, and ACC results may guide hearing intervention/rehabilitation strategies. The review identified that the time taken to perform ACC measurements was often lengthy; the development of more efficient ACC test procedures for children would be beneficial. Comparisons between objective ACC measurements and behavioural measures of sound discrimination showed significant correlations for some, but not all, included studies.</p></div><div><h3>Conclusions</h3><p>ACC measurements of the neural capacity to discriminate between speech and non-speech sounds are feasible in infants and children, and a wide range of possible clinical applications exist, although more time-efficient procedures would be advantageous for clinical uptake. A consideration of age and maturational effects is recommended, and further research is required to investigate the relationship between objective ACC measures and behavioural measures of sound and speech perception for effective clinical implementation.</p></div>\",\"PeriodicalId\":12881,\"journal\":{\"name\":\"Hearing Research\",\"volume\":\"451 \",\"pages\":\"Article 109090\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001436/pdfft?md5=688d4b22fede6c01b1917a49bbc35347&pid=1-s2.0-S0378595524001436-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hearing Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378595524001436\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378595524001436","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
A systematic review of acoustic change complex (ACC) measurements and applicability in children for the assessment of the neural capacity for sound and speech discrimination
Objective
The acoustic change complex (ACC) is a cortical auditory evoked potential (CAEP) and can be elicited by a change in an otherwise continuous sound. The ACC has been highlighted as a promising tool in the assessment of sound and speech discrimination capacity, and particularly for difficult-to-test populations such as infants with hearing loss, due to the objective nature of ACC measurements. Indeed, there is a pressing need to develop further means to accurately and thoroughly establish the hearing status of children with hearing loss, to help guide hearing interventions in a timely manner. Despite the potential of the ACC method, ACC measurements remain relatively rare in a standard clinical settings. The objective of this study was to perform an up-to-date systematic review on ACC measurements in children, to provide greater clarity and consensus on the possible methodologies, applications, and performance of this technique, and to facilitate its uptake in relevant clinical settings.
Design
Original peer-reviewed articles conducting ACC measurements in children (< 18 years). Data were extracted and summarised for: (1) participant characteristics; (2) ACC methods and auditory stimuli; (3) information related to the performance of the ACC technique; (4) ACC measurement outcomes, advantages, and challenges. The systematic review was conducted using PRISMA guidelines for reporting and the methodological quality of included articles was assessed.
Results
A total of 28 studies were identified (9 infant studies). Review results show that ACC responses can be measured in infants (from < 3 months), and there is evidence of age-dependency, including increased robustness of the ACC response with increasing childhood age. Clinical applications include the measurement of the neural capacity for speech and non-speech sound discrimination in children with hearing loss, auditory neuropathy spectrum disorder (ANSD) and central auditory processing disorder (CAPD). Additionally, ACCs can be recorded in children with hearing aids, auditory brainstem implants, and cochlear implants, and ACC results may guide hearing intervention/rehabilitation strategies. The review identified that the time taken to perform ACC measurements was often lengthy; the development of more efficient ACC test procedures for children would be beneficial. Comparisons between objective ACC measurements and behavioural measures of sound discrimination showed significant correlations for some, but not all, included studies.
Conclusions
ACC measurements of the neural capacity to discriminate between speech and non-speech sounds are feasible in infants and children, and a wide range of possible clinical applications exist, although more time-efficient procedures would be advantageous for clinical uptake. A consideration of age and maturational effects is recommended, and further research is required to investigate the relationship between objective ACC measures and behavioural measures of sound and speech perception for effective clinical implementation.
期刊介绍:
The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles.
Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.