ESC 对阻塞性冠状动脉疾病的检测前概率估计:能否在巴西使用?

Fernanda Erthal, Ronaldo Lima, F. Penna, Benjamin Chow, Ronaldo Gismondi
{"title":"ESC 对阻塞性冠状动脉疾病的检测前概率估计:能否在巴西使用?","authors":"Fernanda Erthal, Ronaldo Lima, F. Penna, Benjamin Chow, Ronaldo Gismondi","doi":"10.1093/ehjimp/qyae075","DOIUrl":null,"url":null,"abstract":"\n \n \n Cardiovascular disease, primarily coronary artery disease (CAD), is the leading cause of mortality worldwide. Accurate diagnosis of CAD often requires pre-test probability (PTP) estimation, traditionally performed using scoring systems like the Diamond-Forrester (DF) and European Society of Cardiology (ESC) models. However, the applicability of such models in specific population may vary. This study compares the performance of DF and PTP scores in the Brazilian context, using coronary computed tomography angiography (CCTA) as a reference standard.\n \n \n \n PTP for obstructive CAD was calculated using DF and ESC scores in 409 symptomatic patients without known CAD who underwent CCTA between 2019 and 2022. Predicted PTP was compared with actual CAD prevalence. DF overestimated CAD prevalence across age and symptom categories, while ESC showed better alignment with actual prevalence.\n \n \n \n Our study confirms that the ESC PTP model is more appropriate than the DF model for determining PTP in the Brazilian population.\n","PeriodicalId":508944,"journal":{"name":"European Heart Journal - Imaging Methods and Practice","volume":"15 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESC Pre-Test Probability Estimates for Obstructive Coronary Artery Disease: Can they be used in Brazil?\",\"authors\":\"Fernanda Erthal, Ronaldo Lima, F. Penna, Benjamin Chow, Ronaldo Gismondi\",\"doi\":\"10.1093/ehjimp/qyae075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\n Cardiovascular disease, primarily coronary artery disease (CAD), is the leading cause of mortality worldwide. Accurate diagnosis of CAD often requires pre-test probability (PTP) estimation, traditionally performed using scoring systems like the Diamond-Forrester (DF) and European Society of Cardiology (ESC) models. However, the applicability of such models in specific population may vary. This study compares the performance of DF and PTP scores in the Brazilian context, using coronary computed tomography angiography (CCTA) as a reference standard.\\n \\n \\n \\n PTP for obstructive CAD was calculated using DF and ESC scores in 409 symptomatic patients without known CAD who underwent CCTA between 2019 and 2022. Predicted PTP was compared with actual CAD prevalence. DF overestimated CAD prevalence across age and symptom categories, while ESC showed better alignment with actual prevalence.\\n \\n \\n \\n Our study confirms that the ESC PTP model is more appropriate than the DF model for determining PTP in the Brazilian population.\\n\",\"PeriodicalId\":508944,\"journal\":{\"name\":\"European Heart Journal - Imaging Methods and Practice\",\"volume\":\"15 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Heart Journal - Imaging Methods and Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjimp/qyae075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Heart Journal - Imaging Methods and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjimp/qyae075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心血管疾病,主要是冠状动脉疾病(CAD),是全球死亡的主要原因。要准确诊断 CAD,通常需要对检测前概率(PTP)进行估计,传统上使用的评分系统包括 Diamond-Forrester(DF)模型和欧洲心脏病学会(ESC)模型。然而,这些模型在特定人群中的适用性可能有所不同。本研究以冠状动脉计算机断层扫描(CCTA)为参考标准,比较了 DF 和 PTP 评分在巴西的表现。 使用 DF 和 ESC 评分计算了 409 名在 2019 年至 2022 年期间接受 CCTA 检查的无症状、无已知 CAD 患者的阻塞性 CAD PTP。预测的 PTP 与实际的 CAD 患病率进行了比较。DF 高估了不同年龄和症状类别的 CAD 患病率,而 ESC 与实际患病率的吻合度更高。 我们的研究证实,ESC PTP 模型比 DF 模型更适合用于确定巴西人群的 PTP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESC Pre-Test Probability Estimates for Obstructive Coronary Artery Disease: Can they be used in Brazil?
Cardiovascular disease, primarily coronary artery disease (CAD), is the leading cause of mortality worldwide. Accurate diagnosis of CAD often requires pre-test probability (PTP) estimation, traditionally performed using scoring systems like the Diamond-Forrester (DF) and European Society of Cardiology (ESC) models. However, the applicability of such models in specific population may vary. This study compares the performance of DF and PTP scores in the Brazilian context, using coronary computed tomography angiography (CCTA) as a reference standard. PTP for obstructive CAD was calculated using DF and ESC scores in 409 symptomatic patients without known CAD who underwent CCTA between 2019 and 2022. Predicted PTP was compared with actual CAD prevalence. DF overestimated CAD prevalence across age and symptom categories, while ESC showed better alignment with actual prevalence. Our study confirms that the ESC PTP model is more appropriate than the DF model for determining PTP in the Brazilian population.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信