{"title":"生物微结构中突现行为的神经网络","authors":"Manik Kumar, Joe Sgarrella, C. Peco","doi":"10.1108/ec-11-2023-0792","DOIUrl":null,"url":null,"abstract":"PurposeThis paper develops a neural network surrogate model based on a discrete lattice approach to investigate the influence of complex microstructures on the emergent behavior of biological networks.Design/methodology/approachThe adaptability of network-forming organisms, such as, slime molds, relies on fluid-to-solid state transitions and dynamic behaviors at the level of the discrete microstructure, which continuum modeling methods struggle to capture effectively. To address this challenge, we present an optimized approach that combines lattice spring modeling with machine learning to capture dynamic behavior and develop nonlinear constitutive relationships.FindingsThis integrated approach allows us to predict the dynamic response of biological materials with heterogeneous microstructures, overcoming the limitations of conventional trial-and-error lattice design. The study investigates the microstructural behavior of biological materials using a neural network-based surrogate model. The results indicate that our surrogate model is effective in capturing the behavior of discrete lattice microstructures in biological materials.Research limitations/implicationsThe combination of numerical simulations and machine learning endows simulations of the slime mold Physarum polycephalum with a more accurate description of its emergent behavior and offers a pathway for the development of more effective lattice structures across a wide range of applications.Originality/valueThe novelty of this research lies in integrating lattice spring modeling and machine learning to explore the dynamic behavior of biological materials. This combined approach surpasses conventional methods, providing a more holistic and accurate representation of emergent behaviors in organisms.","PeriodicalId":50522,"journal":{"name":"Engineering Computations","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural networks for emergent behavior in biological microstructures\",\"authors\":\"Manik Kumar, Joe Sgarrella, C. Peco\",\"doi\":\"10.1108/ec-11-2023-0792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper develops a neural network surrogate model based on a discrete lattice approach to investigate the influence of complex microstructures on the emergent behavior of biological networks.Design/methodology/approachThe adaptability of network-forming organisms, such as, slime molds, relies on fluid-to-solid state transitions and dynamic behaviors at the level of the discrete microstructure, which continuum modeling methods struggle to capture effectively. To address this challenge, we present an optimized approach that combines lattice spring modeling with machine learning to capture dynamic behavior and develop nonlinear constitutive relationships.FindingsThis integrated approach allows us to predict the dynamic response of biological materials with heterogeneous microstructures, overcoming the limitations of conventional trial-and-error lattice design. The study investigates the microstructural behavior of biological materials using a neural network-based surrogate model. The results indicate that our surrogate model is effective in capturing the behavior of discrete lattice microstructures in biological materials.Research limitations/implicationsThe combination of numerical simulations and machine learning endows simulations of the slime mold Physarum polycephalum with a more accurate description of its emergent behavior and offers a pathway for the development of more effective lattice structures across a wide range of applications.Originality/valueThe novelty of this research lies in integrating lattice spring modeling and machine learning to explore the dynamic behavior of biological materials. This combined approach surpasses conventional methods, providing a more holistic and accurate representation of emergent behaviors in organisms.\",\"PeriodicalId\":50522,\"journal\":{\"name\":\"Engineering Computations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Computations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ec-11-2023-0792\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Computations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ec-11-2023-0792","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Neural networks for emergent behavior in biological microstructures
PurposeThis paper develops a neural network surrogate model based on a discrete lattice approach to investigate the influence of complex microstructures on the emergent behavior of biological networks.Design/methodology/approachThe adaptability of network-forming organisms, such as, slime molds, relies on fluid-to-solid state transitions and dynamic behaviors at the level of the discrete microstructure, which continuum modeling methods struggle to capture effectively. To address this challenge, we present an optimized approach that combines lattice spring modeling with machine learning to capture dynamic behavior and develop nonlinear constitutive relationships.FindingsThis integrated approach allows us to predict the dynamic response of biological materials with heterogeneous microstructures, overcoming the limitations of conventional trial-and-error lattice design. The study investigates the microstructural behavior of biological materials using a neural network-based surrogate model. The results indicate that our surrogate model is effective in capturing the behavior of discrete lattice microstructures in biological materials.Research limitations/implicationsThe combination of numerical simulations and machine learning endows simulations of the slime mold Physarum polycephalum with a more accurate description of its emergent behavior and offers a pathway for the development of more effective lattice structures across a wide range of applications.Originality/valueThe novelty of this research lies in integrating lattice spring modeling and machine learning to explore the dynamic behavior of biological materials. This combined approach surpasses conventional methods, providing a more holistic and accurate representation of emergent behaviors in organisms.
期刊介绍:
The journal presents its readers with broad coverage across all branches of engineering and science of the latest development and application of new solution algorithms, innovative numerical methods and/or solution techniques directed at the utilization of computational methods in engineering analysis, engineering design and practice.
For more information visit: http://www.emeraldgrouppublishing.com/ec.htm