Franko Pandžić, Ivan Sudić, Tomislav Capuder, Ivan Pavičić
{"title":"基于机器学习的输电网络有功功率损耗预测的实践问题","authors":"Franko Pandžić, Ivan Sudić, Tomislav Capuder, Ivan Pavičić","doi":"10.1049/gtd2.13205","DOIUrl":null,"url":null,"abstract":"<p>The cost for covering active power losses makes a significant item in transmission system operators (TSO) annual budgets, and still it received limited attention in the existing literature. The focus of accurate power loss forecasting and procurement is of high increase during the past 2 years due to spikes in electricity prices, making the cost of covering the active power losses a dominant factor of TSO operational costs. This paper presents practical aspects of the highly accurate models for transmission loss forecast in the day ahead time frame for the Croatian transmission system. The contributions are two-fold: 1) Practical insights into usable TSO data are provided, filling a critical research gap and a foundational literature review is established on transmission loss forecasting. 2) A novel method utilizing only electricity transit data as input which outperforms existing practices is presented. For this, several algorithms such as gradient boosted decision tree model (XGB), support vector regressors, multiple linear regression and fully connected feedforward artificial neural networks are developed, and implemented and validated on data obtained from the Croatian TSO. The results show that the XGB model outperforms current TSO model by 32% for 4 months of comparison and TSCNET's commercial solution by 25% during a year-long testing period. The developed XGB model is also implemented as a software tool and put into everyday operation with the Croatian TSO.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"18 14","pages":"2452-2463"},"PeriodicalIF":2.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13205","citationCount":"0","resultStr":"{\"title\":\"On the practical aspects of machine learning based active power loss forecasting in transmission networks\",\"authors\":\"Franko Pandžić, Ivan Sudić, Tomislav Capuder, Ivan Pavičić\",\"doi\":\"10.1049/gtd2.13205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cost for covering active power losses makes a significant item in transmission system operators (TSO) annual budgets, and still it received limited attention in the existing literature. The focus of accurate power loss forecasting and procurement is of high increase during the past 2 years due to spikes in electricity prices, making the cost of covering the active power losses a dominant factor of TSO operational costs. This paper presents practical aspects of the highly accurate models for transmission loss forecast in the day ahead time frame for the Croatian transmission system. The contributions are two-fold: 1) Practical insights into usable TSO data are provided, filling a critical research gap and a foundational literature review is established on transmission loss forecasting. 2) A novel method utilizing only electricity transit data as input which outperforms existing practices is presented. For this, several algorithms such as gradient boosted decision tree model (XGB), support vector regressors, multiple linear regression and fully connected feedforward artificial neural networks are developed, and implemented and validated on data obtained from the Croatian TSO. The results show that the XGB model outperforms current TSO model by 32% for 4 months of comparison and TSCNET's commercial solution by 25% during a year-long testing period. The developed XGB model is also implemented as a software tool and put into everyday operation with the Croatian TSO.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"18 14\",\"pages\":\"2452-2463\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.13205\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13205\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.13205","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
On the practical aspects of machine learning based active power loss forecasting in transmission networks
The cost for covering active power losses makes a significant item in transmission system operators (TSO) annual budgets, and still it received limited attention in the existing literature. The focus of accurate power loss forecasting and procurement is of high increase during the past 2 years due to spikes in electricity prices, making the cost of covering the active power losses a dominant factor of TSO operational costs. This paper presents practical aspects of the highly accurate models for transmission loss forecast in the day ahead time frame for the Croatian transmission system. The contributions are two-fold: 1) Practical insights into usable TSO data are provided, filling a critical research gap and a foundational literature review is established on transmission loss forecasting. 2) A novel method utilizing only electricity transit data as input which outperforms existing practices is presented. For this, several algorithms such as gradient boosted decision tree model (XGB), support vector regressors, multiple linear regression and fully connected feedforward artificial neural networks are developed, and implemented and validated on data obtained from the Croatian TSO. The results show that the XGB model outperforms current TSO model by 32% for 4 months of comparison and TSCNET's commercial solution by 25% during a year-long testing period. The developed XGB model is also implemented as a software tool and put into everyday operation with the Croatian TSO.
期刊介绍:
IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix.
The scope of IET Generation, Transmission & Distribution includes the following:
Design of transmission and distribution systems
Operation and control of power generation
Power system management, planning and economics
Power system operation, protection and control
Power system measurement and modelling
Computer applications and computational intelligence in power flexible AC or DC transmission systems
Special Issues. Current Call for papers:
Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf