Wajid Ahmed, Premila Manohar, C. H. Hussaian Basha
{"title":"包含超导故障限流器的多端 VSC-HVDC 系统的新型瞬态分析","authors":"Wajid Ahmed, Premila Manohar, C. H. Hussaian Basha","doi":"10.1155/2024/5549066","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Power transmission using a voltage source converter- (VSC-) based high-voltage direct current (HVDC) system offers autonomous control of real and reactive power, constant DC voltage polarity, and bidirectional power flow. This helps to realize the multiterminal VSC-HVDC system and its integration into renewable energy sources to meet the growing power demand. However, there is a risk of higher voltages and currents during a DC line fault. The barrier to the advancements of VSC-MTDC systems is the nonavailability of commercial, higher-rated DC circuit breakers. This necessitates research on alternative methods of DC fault-clearing schemes with available technologies. In this direction, a superconducting fault current limiter (SCFCL) is an alternative option to mitigate the problems encountered in VSC-MTDC system operation. Because of this, there are not many VSC-MTDC systems available worldwide. This paper discusses different issues associated with the transient performance of the VSC-MTDC system. A representative case involving resistive SCFCL for DC line protection is presented. The simulations are carried out in the PSCAD/EMTDC platform.</p>\n </div>","PeriodicalId":51293,"journal":{"name":"International Transactions on Electrical Energy Systems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5549066","citationCount":"0","resultStr":"{\"title\":\"A Novel Transient Analysis of Multiterminal VSC-HVDC System Incorporating Superconducting Fault Current Limiter\",\"authors\":\"Wajid Ahmed, Premila Manohar, C. H. Hussaian Basha\",\"doi\":\"10.1155/2024/5549066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Power transmission using a voltage source converter- (VSC-) based high-voltage direct current (HVDC) system offers autonomous control of real and reactive power, constant DC voltage polarity, and bidirectional power flow. This helps to realize the multiterminal VSC-HVDC system and its integration into renewable energy sources to meet the growing power demand. However, there is a risk of higher voltages and currents during a DC line fault. The barrier to the advancements of VSC-MTDC systems is the nonavailability of commercial, higher-rated DC circuit breakers. This necessitates research on alternative methods of DC fault-clearing schemes with available technologies. In this direction, a superconducting fault current limiter (SCFCL) is an alternative option to mitigate the problems encountered in VSC-MTDC system operation. Because of this, there are not many VSC-MTDC systems available worldwide. This paper discusses different issues associated with the transient performance of the VSC-MTDC system. A representative case involving resistive SCFCL for DC line protection is presented. The simulations are carried out in the PSCAD/EMTDC platform.</p>\\n </div>\",\"PeriodicalId\":51293,\"journal\":{\"name\":\"International Transactions on Electrical Energy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/5549066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions on Electrical Energy Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/5549066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions on Electrical Energy Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5549066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel Transient Analysis of Multiterminal VSC-HVDC System Incorporating Superconducting Fault Current Limiter
Power transmission using a voltage source converter- (VSC-) based high-voltage direct current (HVDC) system offers autonomous control of real and reactive power, constant DC voltage polarity, and bidirectional power flow. This helps to realize the multiterminal VSC-HVDC system and its integration into renewable energy sources to meet the growing power demand. However, there is a risk of higher voltages and currents during a DC line fault. The barrier to the advancements of VSC-MTDC systems is the nonavailability of commercial, higher-rated DC circuit breakers. This necessitates research on alternative methods of DC fault-clearing schemes with available technologies. In this direction, a superconducting fault current limiter (SCFCL) is an alternative option to mitigate the problems encountered in VSC-MTDC system operation. Because of this, there are not many VSC-MTDC systems available worldwide. This paper discusses different issues associated with the transient performance of the VSC-MTDC system. A representative case involving resistive SCFCL for DC line protection is presented. The simulations are carried out in the PSCAD/EMTDC platform.
期刊介绍:
International Transactions on Electrical Energy Systems publishes original research results on key advances in the generation, transmission, and distribution of electrical energy systems. Of particular interest are submissions concerning the modeling, analysis, optimization and control of advanced electric power systems.
Manuscripts on topics of economics, finance, policies, insulation materials, low-voltage power electronics, plasmas, and magnetics will generally not be considered for review.