Chao Huang, Xuchen Liu, Shoutian Ma, Anzhen Qin, Yingying Zhang, Yuxiang Xie, Yang Gao, Zhandong Liu
{"title":"用外源 EDAH 增强蜡质玉米的耐涝性并改善谷物品质:Ethephon 和己酸二乙胺基乙酯的混合物","authors":"Chao Huang, Xuchen Liu, Shoutian Ma, Anzhen Qin, Yingying Zhang, Yuxiang Xie, Yang Gao, Zhandong Liu","doi":"10.1111/jac.12729","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Global warming has led to more frequent extreme weather events, such as heavy summer rains, in the Huang-Huai-Hai region. These events significantly impede the growth and development of waxy maize in the area and disrupt the stable progression of the industry. However, there is a lack of effective agricultural measures to mitigate the impact of waterlogging, and the underlying regulation mechanisms remain unclear. To fill this knowledge gap, we conducted a two-year experiment to assess whether exogenous EDAH (a mixture of ethephon and diethyl aminoethyl hexanoate (DA-6), ethephon: DA-6 = 27%: 3%) application during the waxy maize V6 stage, combined with 10 days of waterlogging treatment at the V6, VT and R2 growth stages. The results indicate that exogenous EDAH mitigates the adverse effects of waterlogging stress to a certain extent. It is noteworthy that exogenous EDAH increases the leaf area index and photosynthetic parameters of waxy maize, enhances the activity of catalase in ear leaves at the R3 stage, inhibits the accumulation of malondialdehyde and delays premature aging of plants. Furthermore, exogenous EDAH delays premature ripening of grains caused by waterlogging, increases the moisture content of fresh waxy maize grains during the fresh edible period, but does not effectively mitigate the yield losses caused by waterlogging. However, exogenous EDAH effectively improves grain quality under waterlogging stress, increasing the soluble sugar content and total protein content while reducing starch content, ultimately enhancing the edibility of fresh ears. Through TOPSIS comprehensive evaluation, it can be inferred that exogenous EDAH effectively mitigates the overall impact of waterlogging on waxy maize at both the V6 and VT stages. This research sheds light on potential strategies to mitigate the adverse effects of waterlogging on agricultural productivity and grain quality.</p>\n </div>","PeriodicalId":14864,"journal":{"name":"Journal of Agronomy and Crop Science","volume":"210 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of Waterlogging Tolerance and Improvement of Grain Quality in Waxy Maize With Exogenous EDAH: A Mixture of Ethephon and Diethyl Aminoethyl Hexanoate\",\"authors\":\"Chao Huang, Xuchen Liu, Shoutian Ma, Anzhen Qin, Yingying Zhang, Yuxiang Xie, Yang Gao, Zhandong Liu\",\"doi\":\"10.1111/jac.12729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Global warming has led to more frequent extreme weather events, such as heavy summer rains, in the Huang-Huai-Hai region. These events significantly impede the growth and development of waxy maize in the area and disrupt the stable progression of the industry. However, there is a lack of effective agricultural measures to mitigate the impact of waterlogging, and the underlying regulation mechanisms remain unclear. To fill this knowledge gap, we conducted a two-year experiment to assess whether exogenous EDAH (a mixture of ethephon and diethyl aminoethyl hexanoate (DA-6), ethephon: DA-6 = 27%: 3%) application during the waxy maize V6 stage, combined with 10 days of waterlogging treatment at the V6, VT and R2 growth stages. The results indicate that exogenous EDAH mitigates the adverse effects of waterlogging stress to a certain extent. It is noteworthy that exogenous EDAH increases the leaf area index and photosynthetic parameters of waxy maize, enhances the activity of catalase in ear leaves at the R3 stage, inhibits the accumulation of malondialdehyde and delays premature aging of plants. Furthermore, exogenous EDAH delays premature ripening of grains caused by waterlogging, increases the moisture content of fresh waxy maize grains during the fresh edible period, but does not effectively mitigate the yield losses caused by waterlogging. However, exogenous EDAH effectively improves grain quality under waterlogging stress, increasing the soluble sugar content and total protein content while reducing starch content, ultimately enhancing the edibility of fresh ears. Through TOPSIS comprehensive evaluation, it can be inferred that exogenous EDAH effectively mitigates the overall impact of waterlogging on waxy maize at both the V6 and VT stages. This research sheds light on potential strategies to mitigate the adverse effects of waterlogging on agricultural productivity and grain quality.</p>\\n </div>\",\"PeriodicalId\":14864,\"journal\":{\"name\":\"Journal of Agronomy and Crop Science\",\"volume\":\"210 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agronomy and Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jac.12729\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agronomy and Crop Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jac.12729","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Enhancement of Waterlogging Tolerance and Improvement of Grain Quality in Waxy Maize With Exogenous EDAH: A Mixture of Ethephon and Diethyl Aminoethyl Hexanoate
Global warming has led to more frequent extreme weather events, such as heavy summer rains, in the Huang-Huai-Hai region. These events significantly impede the growth and development of waxy maize in the area and disrupt the stable progression of the industry. However, there is a lack of effective agricultural measures to mitigate the impact of waterlogging, and the underlying regulation mechanisms remain unclear. To fill this knowledge gap, we conducted a two-year experiment to assess whether exogenous EDAH (a mixture of ethephon and diethyl aminoethyl hexanoate (DA-6), ethephon: DA-6 = 27%: 3%) application during the waxy maize V6 stage, combined with 10 days of waterlogging treatment at the V6, VT and R2 growth stages. The results indicate that exogenous EDAH mitigates the adverse effects of waterlogging stress to a certain extent. It is noteworthy that exogenous EDAH increases the leaf area index and photosynthetic parameters of waxy maize, enhances the activity of catalase in ear leaves at the R3 stage, inhibits the accumulation of malondialdehyde and delays premature aging of plants. Furthermore, exogenous EDAH delays premature ripening of grains caused by waterlogging, increases the moisture content of fresh waxy maize grains during the fresh edible period, but does not effectively mitigate the yield losses caused by waterlogging. However, exogenous EDAH effectively improves grain quality under waterlogging stress, increasing the soluble sugar content and total protein content while reducing starch content, ultimately enhancing the edibility of fresh ears. Through TOPSIS comprehensive evaluation, it can be inferred that exogenous EDAH effectively mitigates the overall impact of waterlogging on waxy maize at both the V6 and VT stages. This research sheds light on potential strategies to mitigate the adverse effects of waterlogging on agricultural productivity and grain quality.
期刊介绍:
The effects of stress on crop production of agricultural cultivated plants will grow to paramount importance in the 21st century, and the Journal of Agronomy and Crop Science aims to assist in understanding these challenges. In this context, stress refers to extreme conditions under which crops and forages grow. The journal publishes original papers and reviews on the general and special science of abiotic plant stress. Specific topics include: drought, including water-use efficiency, such as salinity, alkaline and acidic stress, extreme temperatures since heat, cold and chilling stress limit the cultivation of crops, flooding and oxidative stress, and means of restricting them. Special attention is on research which have the topic of narrowing the yield gap. The Journal will give preference to field research and studies on plant stress highlighting these subsections. Particular regard is given to application-oriented basic research and applied research. The application of the scientific principles of agricultural crop experimentation is an essential prerequisite for the publication. Studies based on field experiments must show that they have been repeated (at least three times) on the same organism or have been conducted on several different varieties.