论环绕凸体的随机多边形平均宽度的方差

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2024-07-17 DOI:10.1112/mtk.12266
Alexandra Bakó-Szabó, Ferenc Fodor
{"title":"论环绕凸体的随机多边形平均宽度的方差","authors":"Alexandra Bakó-Szabó,&nbsp;Ferenc Fodor","doi":"10.1112/mtk.12266","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math></math> be a convex body in <span></span><math></math> in which a ball rolls freely and which slides freely in a ball. Let <span></span><math></math> be the intersection of <span></span><math></math> i.i.d. random half-spaces containing <span></span><math></math> chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of <span></span><math></math> as <span></span><math></math>. We achieve this result by first proving an asymptotic upper bound on the variance of the weighted volume of random polytopes generated by <span></span><math></math> i.i.d. random points selected according to certain probability distributions, then, using polarity, we transfer this to the circumscribed model.</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"70 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12266","citationCount":"0","resultStr":"{\"title\":\"On the variance of the mean width of random polytopes circumscribed around a convex body\",\"authors\":\"Alexandra Bakó-Szabó,&nbsp;Ferenc Fodor\",\"doi\":\"10.1112/mtk.12266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span></span><math></math> be a convex body in <span></span><math></math> in which a ball rolls freely and which slides freely in a ball. Let <span></span><math></math> be the intersection of <span></span><math></math> i.i.d. random half-spaces containing <span></span><math></math> chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of <span></span><math></math> as <span></span><math></math>. We achieve this result by first proving an asymptotic upper bound on the variance of the weighted volume of random polytopes generated by <span></span><math></math> i.i.d. random points selected according to certain probability distributions, then, using polarity, we transfer this to the circumscribed model.</p>\",\"PeriodicalId\":18463,\"journal\":{\"name\":\"Mathematika\",\"volume\":\"70 4\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/mtk.12266\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematika\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12266\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/mtk.12266","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设是一个凸体,球可在其中自由滚动,也可在球中自由滑动。让 是根据某种规定概率分布选择的 i.i.d. 随机半空间的交点。我们将证明平均宽度为 的方差的渐近上限。我们首先证明了由按一定概率分布选择的 i.i.d. 随机点生成的随机多边形的加权体积方差的渐近上界,然后利用极性将其转移到圆周模型中,从而得到这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the variance of the mean width of random polytopes circumscribed around a convex body

Let be a convex body in in which a ball rolls freely and which slides freely in a ball. Let be the intersection of i.i.d. random half-spaces containing chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of as . We achieve this result by first proving an asymptotic upper bound on the variance of the weighted volume of random polytopes generated by i.i.d. random points selected according to certain probability distributions, then, using polarity, we transfer this to the circumscribed model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信