Nicolas Wyrsch , Luca Antognini , Christophe Ballif , Saverio Braccini , Pierluigi Casolaro , Sylvain Dunand , Alexander Gottstein , Matt Large , Isidre Mateu , Jonathan Thomet
{"title":"用于 FLASH 放射疗法质子束监测的非晶硅探测器","authors":"Nicolas Wyrsch , Luca Antognini , Christophe Ballif , Saverio Braccini , Pierluigi Casolaro , Sylvain Dunand , Alexander Gottstein , Matt Large , Isidre Mateu , Jonathan Thomet","doi":"10.1016/j.radmeas.2024.107230","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-high dose rate radiation therapy (FLASH) based on proton irradiation is of major interest for cancer treatments but creates new challenges for dose monitoring. Amorphous hydrogenated silicon is known to be one of the most radiation-hard semiconductors. In this study, detectors based on this material are investigated at proton dose rates similar to or exceeding those required for FLASH therapy. Tested detectors comprise two different types of contacts, two different thicknesses deposited either on glass or on polyimide substrates. All detectors exhibit excellent linear behaviour as a function of dose rate up to a value of 20 kGy/s. Linearity is achieved independently of the depletion condition of the device and remarkably in passive (unbiased) conditions. The degradation of the performance as a function of the dose rate and its recovery are also discussed.</p></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1350448724001781/pdfft?md5=7215b6a5699dcf8dc413421bae30d1f7&pid=1-s2.0-S1350448724001781-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Amorphous silicon detectors for proton beam monitoring in FLASH radiotherapy\",\"authors\":\"Nicolas Wyrsch , Luca Antognini , Christophe Ballif , Saverio Braccini , Pierluigi Casolaro , Sylvain Dunand , Alexander Gottstein , Matt Large , Isidre Mateu , Jonathan Thomet\",\"doi\":\"10.1016/j.radmeas.2024.107230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ultra-high dose rate radiation therapy (FLASH) based on proton irradiation is of major interest for cancer treatments but creates new challenges for dose monitoring. Amorphous hydrogenated silicon is known to be one of the most radiation-hard semiconductors. In this study, detectors based on this material are investigated at proton dose rates similar to or exceeding those required for FLASH therapy. Tested detectors comprise two different types of contacts, two different thicknesses deposited either on glass or on polyimide substrates. All detectors exhibit excellent linear behaviour as a function of dose rate up to a value of 20 kGy/s. Linearity is achieved independently of the depletion condition of the device and remarkably in passive (unbiased) conditions. The degradation of the performance as a function of the dose rate and its recovery are also discussed.</p></div>\",\"PeriodicalId\":21055,\"journal\":{\"name\":\"Radiation Measurements\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1350448724001781/pdfft?md5=7215b6a5699dcf8dc413421bae30d1f7&pid=1-s2.0-S1350448724001781-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Measurements\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350448724001781\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724001781","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Amorphous silicon detectors for proton beam monitoring in FLASH radiotherapy
Ultra-high dose rate radiation therapy (FLASH) based on proton irradiation is of major interest for cancer treatments but creates new challenges for dose monitoring. Amorphous hydrogenated silicon is known to be one of the most radiation-hard semiconductors. In this study, detectors based on this material are investigated at proton dose rates similar to or exceeding those required for FLASH therapy. Tested detectors comprise two different types of contacts, two different thicknesses deposited either on glass or on polyimide substrates. All detectors exhibit excellent linear behaviour as a function of dose rate up to a value of 20 kGy/s. Linearity is achieved independently of the depletion condition of the device and remarkably in passive (unbiased) conditions. The degradation of the performance as a function of the dose rate and its recovery are also discussed.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.