Crouzeix-Raviart 有限元的新二次多项式和三次多项式富集

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Francesco Dell'Accio , Allal Guessab , Federico Nudo
{"title":"Crouzeix-Raviart 有限元的新二次多项式和三次多项式富集","authors":"Francesco Dell'Accio ,&nbsp;Allal Guessab ,&nbsp;Federico Nudo","doi":"10.1016/j.camwa.2024.06.019","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce quadratic and cubic polynomial enrichments of the classical Crouzeix–Raviart finite element, with the aim of constructing accurate approximations in such enriched elements. To achieve this goal, we respectively add three and seven weighted line integrals as enriched degrees of freedom. For each case, we present a necessary and sufficient condition under which these augmented elements are well-defined. For illustration purposes, we then use a general approach to define two-parameter families of admissible degrees of freedom. Additionally, we provide explicit expressions for the associated basis functions and subsequently introduce new quadratic and cubic approximation operators based on the proposed admissible elements. The efficiency of the enriched methods is compared with that of the triangular Crouzeix–Raviart element. As expected, the numerical results exhibit a significant improvement, confirming the effectiveness of the developed enrichment strategy.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0898122124002876/pdfft?md5=efb59dbb046dc854aeaade45963dc4e0&pid=1-s2.0-S0898122124002876-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite element\",\"authors\":\"Francesco Dell'Accio ,&nbsp;Allal Guessab ,&nbsp;Federico Nudo\",\"doi\":\"10.1016/j.camwa.2024.06.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we introduce quadratic and cubic polynomial enrichments of the classical Crouzeix–Raviart finite element, with the aim of constructing accurate approximations in such enriched elements. To achieve this goal, we respectively add three and seven weighted line integrals as enriched degrees of freedom. For each case, we present a necessary and sufficient condition under which these augmented elements are well-defined. For illustration purposes, we then use a general approach to define two-parameter families of admissible degrees of freedom. Additionally, we provide explicit expressions for the associated basis functions and subsequently introduce new quadratic and cubic approximation operators based on the proposed admissible elements. The efficiency of the enriched methods is compared with that of the triangular Crouzeix–Raviart element. As expected, the numerical results exhibit a significant improvement, confirming the effectiveness of the developed enrichment strategy.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0898122124002876/pdfft?md5=efb59dbb046dc854aeaade45963dc4e0&pid=1-s2.0-S0898122124002876-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124002876\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124002876","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了经典 Crouzeix-Raviart 有限元的二次多项式和三次多项式富集,目的是在这种富集元素中构建精确的近似值。为实现这一目标,我们分别添加了三个和七个加权线积分作为丰富自由度。针对每种情况,我们都提出了这些增强元素定义明确的必要条件和充分条件。为了说明问题,我们随后使用一般方法定义了可容许自由度的双参数族。此外,我们还提供了相关基函数的明确表达式,并随后根据所提出的可容许元素引入了新的二次方和三次方近似算子。我们将丰富方法的效率与三角 Crouzeix-Raviart 元素的效率进行了比较。正如预期的那样,数值结果显示出显著的改进,证实了所开发的丰富策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New quadratic and cubic polynomial enrichments of the Crouzeix–Raviart finite element

In this paper, we introduce quadratic and cubic polynomial enrichments of the classical Crouzeix–Raviart finite element, with the aim of constructing accurate approximations in such enriched elements. To achieve this goal, we respectively add three and seven weighted line integrals as enriched degrees of freedom. For each case, we present a necessary and sufficient condition under which these augmented elements are well-defined. For illustration purposes, we then use a general approach to define two-parameter families of admissible degrees of freedom. Additionally, we provide explicit expressions for the associated basis functions and subsequently introduce new quadratic and cubic approximation operators based on the proposed admissible elements. The efficiency of the enriched methods is compared with that of the triangular Crouzeix–Raviart element. As expected, the numerical results exhibit a significant improvement, confirming the effectiveness of the developed enrichment strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信