变时间步长 BDF2 与 FitzHugh-Nagumo 模型快速双网格有限元算法相结合的分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xinyuan Liu , Nan Liu , Yang Liu , Hong Li
{"title":"变时间步长 BDF2 与 FitzHugh-Nagumo 模型快速双网格有限元算法相结合的分析","authors":"Xinyuan Liu ,&nbsp;Nan Liu ,&nbsp;Yang Liu ,&nbsp;Hong Li","doi":"10.1016/j.camwa.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, a fast numerical method is developed for solving the FitzHugh-Nagumo (FHN) model by combining two-grid finite element (TGFE) algorithm in space with a linearized variable-time-step (VTS) two-step backward differentiation formula (BDF2) in time. This algorithm mainly included two steps: firstly, the nonlinear coupled system on the coarse grid is solved by a nonlinear iteration; secondly, a linearized coupled system on the fine grid by making use of a Taylor formula is formulated, and the numerical solution pair is solved directly. The techniques of the discrete orthogonal convolution (DOC) kernels and the discrete complementary convolution (DCC) kernels are used to derive the optimal error estimations in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and the stability analysis for the fully discrete scheme on the coarse and fine grids, and to prove the optimal <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm error estimation for the fully discrete TGFE scheme. These analyses hold for adjacent time-step ratios <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mn>4.8645</mn><mo>−</mo><mi>δ</mi></math></span> (<em>δ</em> being an arbitrarily small constant). Finally, the effectiveness and computing efficiency of the proposed algorithm are verified through several numerical examples.</p></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of variable-time-step BDF2 combined with the fast two-grid finite element algorithm for the FitzHugh-Nagumo model\",\"authors\":\"Xinyuan Liu ,&nbsp;Nan Liu ,&nbsp;Yang Liu ,&nbsp;Hong Li\",\"doi\":\"10.1016/j.camwa.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article, a fast numerical method is developed for solving the FitzHugh-Nagumo (FHN) model by combining two-grid finite element (TGFE) algorithm in space with a linearized variable-time-step (VTS) two-step backward differentiation formula (BDF2) in time. This algorithm mainly included two steps: firstly, the nonlinear coupled system on the coarse grid is solved by a nonlinear iteration; secondly, a linearized coupled system on the fine grid by making use of a Taylor formula is formulated, and the numerical solution pair is solved directly. The techniques of the discrete orthogonal convolution (DOC) kernels and the discrete complementary convolution (DCC) kernels are used to derive the optimal error estimations in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and the stability analysis for the fully discrete scheme on the coarse and fine grids, and to prove the optimal <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm error estimation for the fully discrete TGFE scheme. These analyses hold for adjacent time-step ratios <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mn>4.8645</mn><mo>−</mo><mi>δ</mi></math></span> (<em>δ</em> being an arbitrarily small constant). Finally, the effectiveness and computing efficiency of the proposed algorithm are verified through several numerical examples.</p></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124003018\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124003018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文将空间的双网格有限元算法(TGFE)与时间的线性化变时间步长(VTS)两步反向微分公式(BDF2)相结合,开发了一种求解菲茨休-纳古莫(FHN)模型的快速数值方法。该算法主要包括两个步骤:首先,通过非线性迭代求解粗网格上的非线性耦合系统;其次,利用泰勒公式在细网格上建立线性化耦合系统,并直接求解数值解对。利用离散正交卷积(DOC)核和离散互补卷积(DCC)核技术,推导出粗网格和细网格上完全离散方案的 L2 规范最优误差估计和稳定性分析,并证明了完全离散 TGFE 方案的 H1 规范最优误差估计。这些分析适用于相邻时间步长比 0<rk≤4.8645-δ(δ为任意小常数)。最后,通过几个数值实例验证了所提算法的有效性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of variable-time-step BDF2 combined with the fast two-grid finite element algorithm for the FitzHugh-Nagumo model

In this article, a fast numerical method is developed for solving the FitzHugh-Nagumo (FHN) model by combining two-grid finite element (TGFE) algorithm in space with a linearized variable-time-step (VTS) two-step backward differentiation formula (BDF2) in time. This algorithm mainly included two steps: firstly, the nonlinear coupled system on the coarse grid is solved by a nonlinear iteration; secondly, a linearized coupled system on the fine grid by making use of a Taylor formula is formulated, and the numerical solution pair is solved directly. The techniques of the discrete orthogonal convolution (DOC) kernels and the discrete complementary convolution (DCC) kernels are used to derive the optimal error estimations in L2-norm and the stability analysis for the fully discrete scheme on the coarse and fine grids, and to prove the optimal H1-norm error estimation for the fully discrete TGFE scheme. These analyses hold for adjacent time-step ratios 0<rk4.8645δ (δ being an arbitrarily small constant). Finally, the effectiveness and computing efficiency of the proposed algorithm are verified through several numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信