Jordan F. Hill, Samuel Jackson, Mia Uluilelata, Samrath Sood, Jaimey A. Clifton, Ella F.S. Guy, J. Geoffrey Chase
{"title":"设计、制造和控制低成本气道正压装置","authors":"Jordan F. Hill, Samuel Jackson, Mia Uluilelata, Samrath Sood, Jaimey A. Clifton, Ella F.S. Guy, J. Geoffrey Chase","doi":"10.1016/j.ohx.2024.e00559","DOIUrl":null,"url":null,"abstract":"<div><p>Current positive airway pressure devices cost NZ$800-$2500, posing a financial barrier for the estimated 1 billion individuals worldwide with sleep apnea and those researching respiratory diseases. Increasing diagnoses and research interest in the area necessitate a low-cost, easily accessible alternative. Thus, the mePAP, a high-quality, multipurpose, low-cost (∼NZ$250) positive airway pressure device, was designed and prototyped specifically for respiratory disease research, particularly for sleep apnea. The mePAP allows user customization and provides researchers with an affordable tool for testing positive airway pressure algorithms. Unlike typical commercial devices, the mePAP offers adaptability with open-source data collection and easily modifiable software for implementing and analysing different control and diagnostic algorithms. It features three control modes: constant; bilevel; and automatic; and provides pressures from 4 to 20 cmH2O, controlled via a phone app through Wi-Fi, with a mini-sensor added at the mask for increased accuracy. Validation tests showed the mePAP’s performance is comparable to a gold-standard Fisher & Paykel device, with extremely similar output pressures. The mePAP’s low cost enhances accessibility and equity, allowing researchers to test ventilation algorithms for sleep apnea and other respiratory conditions, with all data openly available for analysis. Its adaptability and multiple applications increase its usability and usefulness across various research and clinical settings.</p></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"19 ","pages":"Article e00559"},"PeriodicalIF":2.0000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468067224000531/pdfft?md5=130ec8f76cd631c721efcf941a583181&pid=1-s2.0-S2468067224000531-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design, manufacture, and control of a low-cost positive airway pressure device\",\"authors\":\"Jordan F. Hill, Samuel Jackson, Mia Uluilelata, Samrath Sood, Jaimey A. Clifton, Ella F.S. Guy, J. Geoffrey Chase\",\"doi\":\"10.1016/j.ohx.2024.e00559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current positive airway pressure devices cost NZ$800-$2500, posing a financial barrier for the estimated 1 billion individuals worldwide with sleep apnea and those researching respiratory diseases. Increasing diagnoses and research interest in the area necessitate a low-cost, easily accessible alternative. Thus, the mePAP, a high-quality, multipurpose, low-cost (∼NZ$250) positive airway pressure device, was designed and prototyped specifically for respiratory disease research, particularly for sleep apnea. The mePAP allows user customization and provides researchers with an affordable tool for testing positive airway pressure algorithms. Unlike typical commercial devices, the mePAP offers adaptability with open-source data collection and easily modifiable software for implementing and analysing different control and diagnostic algorithms. It features three control modes: constant; bilevel; and automatic; and provides pressures from 4 to 20 cmH2O, controlled via a phone app through Wi-Fi, with a mini-sensor added at the mask for increased accuracy. Validation tests showed the mePAP’s performance is comparable to a gold-standard Fisher & Paykel device, with extremely similar output pressures. The mePAP’s low cost enhances accessibility and equity, allowing researchers to test ventilation algorithms for sleep apnea and other respiratory conditions, with all data openly available for analysis. Its adaptability and multiple applications increase its usability and usefulness across various research and clinical settings.</p></div>\",\"PeriodicalId\":37503,\"journal\":{\"name\":\"HardwareX\",\"volume\":\"19 \",\"pages\":\"Article e00559\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000531/pdfft?md5=130ec8f76cd631c721efcf941a583181&pid=1-s2.0-S2468067224000531-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HardwareX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468067224000531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design, manufacture, and control of a low-cost positive airway pressure device
Current positive airway pressure devices cost NZ$800-$2500, posing a financial barrier for the estimated 1 billion individuals worldwide with sleep apnea and those researching respiratory diseases. Increasing diagnoses and research interest in the area necessitate a low-cost, easily accessible alternative. Thus, the mePAP, a high-quality, multipurpose, low-cost (∼NZ$250) positive airway pressure device, was designed and prototyped specifically for respiratory disease research, particularly for sleep apnea. The mePAP allows user customization and provides researchers with an affordable tool for testing positive airway pressure algorithms. Unlike typical commercial devices, the mePAP offers adaptability with open-source data collection and easily modifiable software for implementing and analysing different control and diagnostic algorithms. It features three control modes: constant; bilevel; and automatic; and provides pressures from 4 to 20 cmH2O, controlled via a phone app through Wi-Fi, with a mini-sensor added at the mask for increased accuracy. Validation tests showed the mePAP’s performance is comparable to a gold-standard Fisher & Paykel device, with extremely similar output pressures. The mePAP’s low cost enhances accessibility and equity, allowing researchers to test ventilation algorithms for sleep apnea and other respiratory conditions, with all data openly available for analysis. Its adaptability and multiple applications increase its usability and usefulness across various research and clinical settings.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.