{"title":"基于热化学-机械相场耦合断裂模型的 CMAS 腐蚀隔热涂层的开裂机理","authors":"X.H. Liu , W. Zhu , Y.Q. Xiao , J.W. Guo","doi":"10.1016/j.euromechsol.2024.105394","DOIUrl":null,"url":null,"abstract":"<div><p>A thermo-chemo-mechanically coupled theoretical framework is proposed to describe the calcium-magnesium-alumina-silicate (CMAS) corrosion process during the cooling process. A phase-field fracture model is developed to investigate the effect of cooling temperature and CMAS concentration on the degree of corrosion reaction, the stress evolution and the crack initiation and propagation. <em>σ</em><sub>11</sub> concentrates in the region beneath the overlay of CMAS and <em>σ</em><sub>22</sub> appears at the interface between top ceramic coating (TC) and bond coating (BC). The higher stress concentration of <em>σ</em><sub>11</sub> and <em>σ</em><sub>22</sub> contribute to the formation of both vertical and transverse cracks. Transverse cracks first emerge at the interface between TC and BC in the edge region, followed by the formation of vertical cracks in the CMAS-coated region. Vertical cracks propagate to the interface and deflect into transverse cracks. The transverse cracks at the interface further propagate and merge, ultimately leading to the coating delamination. The higher initial cooling temperature and CMAS concentration contribute to the accelerated development of vertical cracking and the increase of the quantity and length of transverse and vertical cracks. The model provides a significant advantage in predicting the failure of TBCs during the cooling stage of CMAS corrosion.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"107 ","pages":"Article 105394"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking mechanism of CMAS-corroded thermal barrier coatings based on a coupled thermo-chemo-mechanically phase-field fracture model\",\"authors\":\"X.H. Liu , W. Zhu , Y.Q. Xiao , J.W. Guo\",\"doi\":\"10.1016/j.euromechsol.2024.105394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A thermo-chemo-mechanically coupled theoretical framework is proposed to describe the calcium-magnesium-alumina-silicate (CMAS) corrosion process during the cooling process. A phase-field fracture model is developed to investigate the effect of cooling temperature and CMAS concentration on the degree of corrosion reaction, the stress evolution and the crack initiation and propagation. <em>σ</em><sub>11</sub> concentrates in the region beneath the overlay of CMAS and <em>σ</em><sub>22</sub> appears at the interface between top ceramic coating (TC) and bond coating (BC). The higher stress concentration of <em>σ</em><sub>11</sub> and <em>σ</em><sub>22</sub> contribute to the formation of both vertical and transverse cracks. Transverse cracks first emerge at the interface between TC and BC in the edge region, followed by the formation of vertical cracks in the CMAS-coated region. Vertical cracks propagate to the interface and deflect into transverse cracks. The transverse cracks at the interface further propagate and merge, ultimately leading to the coating delamination. The higher initial cooling temperature and CMAS concentration contribute to the accelerated development of vertical cracking and the increase of the quantity and length of transverse and vertical cracks. The model provides a significant advantage in predicting the failure of TBCs during the cooling stage of CMAS corrosion.</p></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"107 \",\"pages\":\"Article 105394\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824001748\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001748","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Cracking mechanism of CMAS-corroded thermal barrier coatings based on a coupled thermo-chemo-mechanically phase-field fracture model
A thermo-chemo-mechanically coupled theoretical framework is proposed to describe the calcium-magnesium-alumina-silicate (CMAS) corrosion process during the cooling process. A phase-field fracture model is developed to investigate the effect of cooling temperature and CMAS concentration on the degree of corrosion reaction, the stress evolution and the crack initiation and propagation. σ11 concentrates in the region beneath the overlay of CMAS and σ22 appears at the interface between top ceramic coating (TC) and bond coating (BC). The higher stress concentration of σ11 and σ22 contribute to the formation of both vertical and transverse cracks. Transverse cracks first emerge at the interface between TC and BC in the edge region, followed by the formation of vertical cracks in the CMAS-coated region. Vertical cracks propagate to the interface and deflect into transverse cracks. The transverse cracks at the interface further propagate and merge, ultimately leading to the coating delamination. The higher initial cooling temperature and CMAS concentration contribute to the accelerated development of vertical cracking and the increase of the quantity and length of transverse and vertical cracks. The model provides a significant advantage in predicting the failure of TBCs during the cooling stage of CMAS corrosion.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.