Peter K. Galenko , Dmitri V. Alexandrov , Liubov V. Toropova
{"title":"强制对流下的树枝状晶生长:综述","authors":"Peter K. Galenko , Dmitri V. Alexandrov , Liubov V. Toropova","doi":"10.1016/j.physrep.2024.06.005","DOIUrl":null,"url":null,"abstract":"<div><p>As one of the representative patterns in nature and laboratory experiments, dendritic structures control the properties of a broad range of advanced materials. Dendrites arise during different phase and structural transformation processes. Generally, the formation of dendritic structures are stipulated by transport processes in bulk phases, together with thermodynamic properties and kinetic phenomena at the phase interfaces. The formation of a dendritic microstructure under the influence of external fields (electromagnetic and gravitational) is considered in this review. These fields involve the liquid and gaseous phases in a forced convective flow, causing the transfer of energy and matter in addition to the usual conductive (diffusion) transport. The formulated model takes into account rapid solidification from an undercooled liquid phase as well as intermediate and low growth velocities of dendritic crystals in pure one-component systems extended to binary mixtures and alloys. The areas of undercooling are identified, in which the influence of convection caused by the electromagnetic and/or gravitational field is most noticeable. The solidification regimes (from the diffusion-limited mode to the thermally and kinetically controlled mode) are reviewed in connection with the different liquid flow velocities that dictate various boundary conditions (conductive and convective) on the surface of growing crystals. A comparison of model predictions with experimental data and computational results provides the grounds for a discussion about the applicability of the formulated model to interpreting known and unexpected phenomena in the formation of a crystalline structure. By changing the power of the considered fields or reducing them almost to zero (for instance, in microgravity), it is possible to control the dispersion of a dendritic microstructure, as well as separate accompanying phases (eutectic, peritectic, monotectic, intermetallic phases, etc.) during the solidification of materials and, in the general case, during phase transformations.</p></div>","PeriodicalId":404,"journal":{"name":"Physics Reports","volume":"1085 ","pages":"Pages 1-48"},"PeriodicalIF":23.9000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0370157324002552/pdfft?md5=c097a0b478ceec47e7bc1d718c98edb5&pid=1-s2.0-S0370157324002552-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Dendrite growth under a forced convective flow: A review\",\"authors\":\"Peter K. Galenko , Dmitri V. Alexandrov , Liubov V. Toropova\",\"doi\":\"10.1016/j.physrep.2024.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As one of the representative patterns in nature and laboratory experiments, dendritic structures control the properties of a broad range of advanced materials. Dendrites arise during different phase and structural transformation processes. Generally, the formation of dendritic structures are stipulated by transport processes in bulk phases, together with thermodynamic properties and kinetic phenomena at the phase interfaces. The formation of a dendritic microstructure under the influence of external fields (electromagnetic and gravitational) is considered in this review. These fields involve the liquid and gaseous phases in a forced convective flow, causing the transfer of energy and matter in addition to the usual conductive (diffusion) transport. The formulated model takes into account rapid solidification from an undercooled liquid phase as well as intermediate and low growth velocities of dendritic crystals in pure one-component systems extended to binary mixtures and alloys. The areas of undercooling are identified, in which the influence of convection caused by the electromagnetic and/or gravitational field is most noticeable. The solidification regimes (from the diffusion-limited mode to the thermally and kinetically controlled mode) are reviewed in connection with the different liquid flow velocities that dictate various boundary conditions (conductive and convective) on the surface of growing crystals. A comparison of model predictions with experimental data and computational results provides the grounds for a discussion about the applicability of the formulated model to interpreting known and unexpected phenomena in the formation of a crystalline structure. By changing the power of the considered fields or reducing them almost to zero (for instance, in microgravity), it is possible to control the dispersion of a dendritic microstructure, as well as separate accompanying phases (eutectic, peritectic, monotectic, intermetallic phases, etc.) during the solidification of materials and, in the general case, during phase transformations.</p></div>\",\"PeriodicalId\":404,\"journal\":{\"name\":\"Physics Reports\",\"volume\":\"1085 \",\"pages\":\"Pages 1-48\"},\"PeriodicalIF\":23.9000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0370157324002552/pdfft?md5=c097a0b478ceec47e7bc1d718c98edb5&pid=1-s2.0-S0370157324002552-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Reports\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370157324002552\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Reports","FirstCategoryId":"4","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370157324002552","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Dendrite growth under a forced convective flow: A review
As one of the representative patterns in nature and laboratory experiments, dendritic structures control the properties of a broad range of advanced materials. Dendrites arise during different phase and structural transformation processes. Generally, the formation of dendritic structures are stipulated by transport processes in bulk phases, together with thermodynamic properties and kinetic phenomena at the phase interfaces. The formation of a dendritic microstructure under the influence of external fields (electromagnetic and gravitational) is considered in this review. These fields involve the liquid and gaseous phases in a forced convective flow, causing the transfer of energy and matter in addition to the usual conductive (diffusion) transport. The formulated model takes into account rapid solidification from an undercooled liquid phase as well as intermediate and low growth velocities of dendritic crystals in pure one-component systems extended to binary mixtures and alloys. The areas of undercooling are identified, in which the influence of convection caused by the electromagnetic and/or gravitational field is most noticeable. The solidification regimes (from the diffusion-limited mode to the thermally and kinetically controlled mode) are reviewed in connection with the different liquid flow velocities that dictate various boundary conditions (conductive and convective) on the surface of growing crystals. A comparison of model predictions with experimental data and computational results provides the grounds for a discussion about the applicability of the formulated model to interpreting known and unexpected phenomena in the formation of a crystalline structure. By changing the power of the considered fields or reducing them almost to zero (for instance, in microgravity), it is possible to control the dispersion of a dendritic microstructure, as well as separate accompanying phases (eutectic, peritectic, monotectic, intermetallic phases, etc.) during the solidification of materials and, in the general case, during phase transformations.
期刊介绍:
Physics Reports keeps the active physicist up-to-date on developments in a wide range of topics by publishing timely reviews which are more extensive than just literature surveys but normally less than a full monograph. Each report deals with one specific subject and is generally published in a separate volume. These reviews are specialist in nature but contain enough introductory material to make the main points intelligible to a non-specialist. The reader will not only be able to distinguish important developments and trends in physics but will also find a sufficient number of references to the original literature.