{"title":"将生成式人工智能概念化为风格引擎:应用原型和影响","authors":"Kai Riemer, Sandra Peter","doi":"10.1016/j.ijinfomgt.2024.102824","DOIUrl":null,"url":null,"abstract":"<div><p>The rise of generative AI has brought with it a surprising paradox: systems that excel at tasks once thought to be uniquely human, like fluent conversation or persuasive writing, while simultaneously failing to meet traditional expectations of computing, in terms of reliability, accuracy, and veracity (e.g., given the various issues with so-called ‘hallucinations’). We argue that, when generative AI is seen through a traditional computing lens, its development focuses on optimizing for traditional computing traits that remain in principle unattainable. This risks backgrounding what is most novel and defining about it. As probabilistic technologies, generative AIs do not store, in any traditional sense, any data or content. Rather, essential features of training data become encoded in deep neural networks as patterns, that become practically available as styles. We discuss what happens when the distinction between objects and their appearance dissolves and all aspects of images or text become understood as styles, accessible for exploration and creative combination and generation. For example, defining visual qualities of entities like ‘chair’ or ‘cat’ become available as ‘chair-ness’ or ‘cat-ness’ for creative image generation. We argue that, when understood as style engines, unique generative AI capabilities become conceptualized as complementing traditional computing ones. This will aid both computing practitioners and information systems researchers in reconciling and integrating generative AI into the traditional IS landscape. Our conceptualization leads us to propose four archetypes of generative AI application and use, and to highlight future avenues for information systems research made visible by this conceptualization, as well as implications for practice and policymaking.</p></div>","PeriodicalId":48422,"journal":{"name":"International Journal of Information Management","volume":"79 ","pages":"Article 102824"},"PeriodicalIF":20.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0268401224000720/pdfft?md5=fbb7fa4b5686d0030ad6839ae1031b2b&pid=1-s2.0-S0268401224000720-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Conceptualizing generative AI as style engines: Application archetypes and implications\",\"authors\":\"Kai Riemer, Sandra Peter\",\"doi\":\"10.1016/j.ijinfomgt.2024.102824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rise of generative AI has brought with it a surprising paradox: systems that excel at tasks once thought to be uniquely human, like fluent conversation or persuasive writing, while simultaneously failing to meet traditional expectations of computing, in terms of reliability, accuracy, and veracity (e.g., given the various issues with so-called ‘hallucinations’). We argue that, when generative AI is seen through a traditional computing lens, its development focuses on optimizing for traditional computing traits that remain in principle unattainable. This risks backgrounding what is most novel and defining about it. As probabilistic technologies, generative AIs do not store, in any traditional sense, any data or content. Rather, essential features of training data become encoded in deep neural networks as patterns, that become practically available as styles. We discuss what happens when the distinction between objects and their appearance dissolves and all aspects of images or text become understood as styles, accessible for exploration and creative combination and generation. For example, defining visual qualities of entities like ‘chair’ or ‘cat’ become available as ‘chair-ness’ or ‘cat-ness’ for creative image generation. We argue that, when understood as style engines, unique generative AI capabilities become conceptualized as complementing traditional computing ones. This will aid both computing practitioners and information systems researchers in reconciling and integrating generative AI into the traditional IS landscape. Our conceptualization leads us to propose four archetypes of generative AI application and use, and to highlight future avenues for information systems research made visible by this conceptualization, as well as implications for practice and policymaking.</p></div>\",\"PeriodicalId\":48422,\"journal\":{\"name\":\"International Journal of Information Management\",\"volume\":\"79 \",\"pages\":\"Article 102824\"},\"PeriodicalIF\":20.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0268401224000720/pdfft?md5=fbb7fa4b5686d0030ad6839ae1031b2b&pid=1-s2.0-S0268401224000720-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Management\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0268401224000720\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Management","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0268401224000720","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Conceptualizing generative AI as style engines: Application archetypes and implications
The rise of generative AI has brought with it a surprising paradox: systems that excel at tasks once thought to be uniquely human, like fluent conversation or persuasive writing, while simultaneously failing to meet traditional expectations of computing, in terms of reliability, accuracy, and veracity (e.g., given the various issues with so-called ‘hallucinations’). We argue that, when generative AI is seen through a traditional computing lens, its development focuses on optimizing for traditional computing traits that remain in principle unattainable. This risks backgrounding what is most novel and defining about it. As probabilistic technologies, generative AIs do not store, in any traditional sense, any data or content. Rather, essential features of training data become encoded in deep neural networks as patterns, that become practically available as styles. We discuss what happens when the distinction between objects and their appearance dissolves and all aspects of images or text become understood as styles, accessible for exploration and creative combination and generation. For example, defining visual qualities of entities like ‘chair’ or ‘cat’ become available as ‘chair-ness’ or ‘cat-ness’ for creative image generation. We argue that, when understood as style engines, unique generative AI capabilities become conceptualized as complementing traditional computing ones. This will aid both computing practitioners and information systems researchers in reconciling and integrating generative AI into the traditional IS landscape. Our conceptualization leads us to propose four archetypes of generative AI application and use, and to highlight future avenues for information systems research made visible by this conceptualization, as well as implications for practice and policymaking.
期刊介绍:
The International Journal of Information Management (IJIM) is a distinguished, international, and peer-reviewed journal dedicated to providing its readers with top-notch analysis and discussions within the evolving field of information management. Key features of the journal include:
Comprehensive Coverage:
IJIM keeps readers informed with major papers, reports, and reviews.
Topical Relevance:
The journal remains current and relevant through Viewpoint articles and regular features like Research Notes, Case Studies, and a Reviews section, ensuring readers are updated on contemporary issues.
Focus on Quality:
IJIM prioritizes high-quality papers that address contemporary issues in information management.