{"title":"有限域上 n 对 1 映射的新结果","authors":"Xiaoer Qin , Li Yan","doi":"10.1016/j.ffa.2024.102469","DOIUrl":null,"url":null,"abstract":"<div><p><em>n</em>-to-1 mappings have many applications in cryptography, finite geometry, coding theory and combinatorial design. In this paper, we first use cyclotomic cosets to construct several kinds of <em>n</em>-to-1 mappings over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Then we characterize a new form of AGW-like criterion, and use it to present many classes of <em>n</em>-to-1 polynomials with the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Finally, by using monomials on the cosets of a subgroup of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and another form of AGW-like criterion, we show some <em>n</em>-to-1 trinomials over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"98 ","pages":"Article 102469"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on n-to-1 mappings over finite fields\",\"authors\":\"Xiaoer Qin , Li Yan\",\"doi\":\"10.1016/j.ffa.2024.102469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>n</em>-to-1 mappings have many applications in cryptography, finite geometry, coding theory and combinatorial design. In this paper, we first use cyclotomic cosets to construct several kinds of <em>n</em>-to-1 mappings over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Then we characterize a new form of AGW-like criterion, and use it to present many classes of <em>n</em>-to-1 polynomials with the form <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>r</mi></mrow></msup><mi>h</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>q</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>. Finally, by using monomials on the cosets of a subgroup of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>q</mi><mo>+</mo><mn>1</mn></mrow></msub></math></span> and another form of AGW-like criterion, we show some <em>n</em>-to-1 trinomials over <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mo>⁎</mo></mrow></msubsup></math></span>.</p></div>\",\"PeriodicalId\":50446,\"journal\":{\"name\":\"Finite Fields and Their Applications\",\"volume\":\"98 \",\"pages\":\"Article 102469\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Fields and Their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1071579724001084\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724001084","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
n 对 1 映射在密码学、有限几何、编码理论和组合设计中有很多应用。在本文中,我们首先利用循环余集构造了几种 Fq⁎ 上的 n 对 1 映射。然后,我们描述了一种新形式的类似 AGW 的准则,并用它提出了许多种在 Fq2⁎上具有 xrh(xq-1) 形式的 n 对 1 多项式。最后,通过使用 μq+1 子群余集上的单项式和另一种形式的类 AGW 准则,我们展示了 Fq2⁎ 上的一些 n 对 1 三项式。
n-to-1 mappings have many applications in cryptography, finite geometry, coding theory and combinatorial design. In this paper, we first use cyclotomic cosets to construct several kinds of n-to-1 mappings over . Then we characterize a new form of AGW-like criterion, and use it to present many classes of n-to-1 polynomials with the form over . Finally, by using monomials on the cosets of a subgroup of and another form of AGW-like criterion, we show some n-to-1 trinomials over .
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.