在线匹配中的班级公平性

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hadi Hosseini , Zhiyi Huang , Ayumi Igarashi , Nisarg Shah
{"title":"在线匹配中的班级公平性","authors":"Hadi Hosseini ,&nbsp;Zhiyi Huang ,&nbsp;Ayumi Igarashi ,&nbsp;Nisarg Shah","doi":"10.1016/j.artint.2024.104177","DOIUrl":null,"url":null,"abstract":"<div><p>We initiate the study of fairness among <em>classes</em> of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into classes and the matching is required to be fair with respect to the classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings). For matching indivisible items, we propose an adaptive-priority-based algorithm, <span>Match-and-Shift</span>, prove that it achieves <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, <span>Equal-Filling</span>, that achieves <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></math></span>-approximation of class envy-freeness and class proportionality; we prove <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac></math></span> to be tight for class proportionality and establish a <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> upper bound on class envy-freeness. Finally, we discuss several challenges in designing randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we build upon <span>Equal-Filling</span> to design a randomized algorithm for matching indivisible items, <span>Equal-Filling-OCS</span>, which achieves 0.593-approximation of class proportionality.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"335 ","pages":"Article 104177"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class fairness in online matching\",\"authors\":\"Hadi Hosseini ,&nbsp;Zhiyi Huang ,&nbsp;Ayumi Igarashi ,&nbsp;Nisarg Shah\",\"doi\":\"10.1016/j.artint.2024.104177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We initiate the study of fairness among <em>classes</em> of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into classes and the matching is required to be fair with respect to the classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings). For matching indivisible items, we propose an adaptive-priority-based algorithm, <span>Match-and-Shift</span>, prove that it achieves <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span>-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, <span>Equal-Filling</span>, that achieves <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></math></span>-approximation of class envy-freeness and class proportionality; we prove <span><math><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac></math></span> to be tight for class proportionality and establish a <span><math><mfrac><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></mfrac></math></span> upper bound on class envy-freeness. Finally, we discuss several challenges in designing randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we build upon <span>Equal-Filling</span> to design a randomized algorithm for matching indivisible items, <span>Equal-Filling-OCS</span>, which achieves 0.593-approximation of class proportionality.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"335 \",\"pages\":\"Article 104177\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001139\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001139","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们开始研究在线双向匹配中不同类别代理之间的公平性,其中有一组给定的离线顶点(又称代理)和另一组在线到达的顶点(又称项目),到达后必须进行不可撤销的匹配。在这种情况下,代理被划分为不同的类别,而匹配要求在不同类别之间是公平的。我们将流行的公平性概念(如无妒忌、比例性和最大份额)及其松弛概念应用于这一环境,并研究不可分割项目匹配(导致积分匹配)和可分割项目匹配(导致分数匹配)的确定性算法。对于不可分割项的匹配,我们提出了一种基于自适应优先级的算法--"匹配与转移"(Match-and-Shift),并证明该算法可以实现 12 近似值的类嫉妒无忧(最多一个项)和类最大份额公平性,还证明了每种保证都很严密。对于可分割项的匹配,我们设计了一种基于注水的算法 Equal-Filling,它能实现 (1-1e)- 近似的类嫉妒无绿化度和类比例度;我们证明了 1-1e 对于类比例度是紧密的,并建立了类嫉妒无绿化度的 34 上界。最后,我们讨论了设计能达到合理公平近似率的随机算法所面临的几个挑战。尽管如此,我们还是在 Equal-Filling 的基础上设计了一种用于匹配不可分割项的随机算法 Equal-Filling-OCS,它达到了 0.593 的类比例近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Class fairness in online matching

We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into classes and the matching is required to be fair with respect to the classes. We adapt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings). For matching indivisible items, we propose an adaptive-priority-based algorithm, Match-and-Shift, prove that it achieves 12-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, Equal-Filling, that achieves (11e)-approximation of class envy-freeness and class proportionality; we prove 11e to be tight for class proportionality and establish a 34 upper bound on class envy-freeness. Finally, we discuss several challenges in designing randomized algorithms that achieve reasonable fairness approximation ratios. Nonetheless, we build upon Equal-Filling to design a randomized algorithm for matching indivisible items, Equal-Filling-OCS, which achieves 0.593-approximation of class proportionality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信