根系上的复有理超几何函数

IF 1.6 3区 数学 Q1 MATHEMATICS
G.A. Sarkissian , V.P. Spiridonov
{"title":"根系上的复有理超几何函数","authors":"G.A. Sarkissian ,&nbsp;V.P. Spiridonov","doi":"10.1016/j.geomphys.2024.105274","DOIUrl":null,"url":null,"abstract":"<div><p>We consider some new limits for the elliptic hypergeometric integrals on root systems. After the degeneration of elliptic beta integrals of type I and type II for root systems <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to the hyperbolic hypergeometric integrals, we apply the limit <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mo>−</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for their quasiperiods (corresponding to <span><math><mi>b</mi><mo>→</mo><mtext>i</mtext></math></span> in the two-dimensional conformal field theory) and obtain complex beta integrals in the Mellin–Barnes representation admitting exact evaluation. Considering type I elliptic hypergeometric integrals of a higher order obeying nontrivial symmetry transformations, we derive their descendants to the level of complex hypergeometric functions and prove the Derkachov–Manashov conjectures for functions emerging in the theory of non-compact spin chains. We describe also symmetry transformations for a type II complex hypergeometric function on the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-root system related to the recently derived generalized complex Selberg integral. For some hyperbolic beta integrals we consider a special limit <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (or <span><math><mi>b</mi><mo>→</mo><mn>1</mn></math></span>) and obtain new hypergeometric identities for sums of integrals of rational functions.</p></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex and rational hypergeometric functions on root systems\",\"authors\":\"G.A. Sarkissian ,&nbsp;V.P. Spiridonov\",\"doi\":\"10.1016/j.geomphys.2024.105274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider some new limits for the elliptic hypergeometric integrals on root systems. After the degeneration of elliptic beta integrals of type I and type II for root systems <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to the hyperbolic hypergeometric integrals, we apply the limit <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><mo>−</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> for their quasiperiods (corresponding to <span><math><mi>b</mi><mo>→</mo><mtext>i</mtext></math></span> in the two-dimensional conformal field theory) and obtain complex beta integrals in the Mellin–Barnes representation admitting exact evaluation. Considering type I elliptic hypergeometric integrals of a higher order obeying nontrivial symmetry transformations, we derive their descendants to the level of complex hypergeometric functions and prove the Derkachov–Manashov conjectures for functions emerging in the theory of non-compact spin chains. We describe also symmetry transformations for a type II complex hypergeometric function on the <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-root system related to the recently derived generalized complex Selberg integral. For some hyperbolic beta integrals we consider a special limit <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>→</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> (or <span><math><mi>b</mi><mo>→</mo><mn>1</mn></math></span>) and obtain new hypergeometric identities for sums of integrals of rational functions.</p></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S039304402400175X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S039304402400175X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了根系上椭圆超几何积分的一些新极限。在将根系统 An 和 Cn 的 I 型和 II 型椭圆贝塔积分退化为双曲超几何积分之后,我们对它们的准周期(对应于二维共形场论中的 b→i)应用了极限 ω1→-ω2,并得到了可精确求值的梅林-巴恩斯表示中的复贝塔积分。考虑到 I 型椭圆超几何积分的高阶服从非对称变换,我们推导出了它们的后代复超几何函数,并证明了非紧密自旋链理论中出现的函数的德尔卡乔夫-马纳绍夫猜想。我们还描述了与最近推导出的广义复塞尔伯格积分有关的 Cn-root 系统上第二类复超几何函数的对称变换。对于一些双曲贝塔积分,我们考虑了一个特殊的极限 ω1→ω2(或 b→1),并得到了有理函数积分之和的新的双曲等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex and rational hypergeometric functions on root systems

We consider some new limits for the elliptic hypergeometric integrals on root systems. After the degeneration of elliptic beta integrals of type I and type II for root systems An and Cn to the hyperbolic hypergeometric integrals, we apply the limit ω1ω2 for their quasiperiods (corresponding to bi in the two-dimensional conformal field theory) and obtain complex beta integrals in the Mellin–Barnes representation admitting exact evaluation. Considering type I elliptic hypergeometric integrals of a higher order obeying nontrivial symmetry transformations, we derive their descendants to the level of complex hypergeometric functions and prove the Derkachov–Manashov conjectures for functions emerging in the theory of non-compact spin chains. We describe also symmetry transformations for a type II complex hypergeometric function on the Cn-root system related to the recently derived generalized complex Selberg integral. For some hyperbolic beta integrals we consider a special limit ω1ω2 (or b1) and obtain new hypergeometric identities for sums of integrals of rational functions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信