不均匀 XXZ 自旋 - 12 链基态贝特根的缩放极限

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
{"title":"不均匀 XXZ 自旋 - 12 链基态贝特根的缩放极限","authors":"","doi":"10.1016/j.nuclphysb.2024.116624","DOIUrl":null,"url":null,"abstract":"<div><p>It is known that for the Heisenberg XXZ spin - <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> chain in the critical regime, the scaling limit of the vacuum Bethe roots yields an infinite set of numbers that coincide with the energy spectrum of the quantum mechanical 3D anharmonic oscillator. The discovery of this curious relation, among others, gave rise to the approach referred to as the ODE/IQFT (or ODE/IM) correspondence. Here we consider a multiparametric generalization of the Heisenberg spin chain, which is associated with the inhomogeneous six-vertex model. When quasi-periodic boundary conditions are imposed the lattice system may be explored within the Bethe Ansatz technique. We argue that for the critical spin chain, with a properly formulated scaling limit, the scaled Bethe roots for the ground state are described by second order differential equations, which are multi-parametric generalizations of the Schrödinger equation for the anharmonic oscillator.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324001901/pdfft?md5=372390a053136699f504a8cd5d5a4cd6&pid=1-s2.0-S0550321324001901-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Scaling limit of the ground state Bethe roots for the inhomogeneous XXZ spin - 12 chain\",\"authors\":\"\",\"doi\":\"10.1016/j.nuclphysb.2024.116624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is known that for the Heisenberg XXZ spin - <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> chain in the critical regime, the scaling limit of the vacuum Bethe roots yields an infinite set of numbers that coincide with the energy spectrum of the quantum mechanical 3D anharmonic oscillator. The discovery of this curious relation, among others, gave rise to the approach referred to as the ODE/IQFT (or ODE/IM) correspondence. Here we consider a multiparametric generalization of the Heisenberg spin chain, which is associated with the inhomogeneous six-vertex model. When quasi-periodic boundary conditions are imposed the lattice system may be explored within the Bethe Ansatz technique. We argue that for the critical spin chain, with a properly formulated scaling limit, the scaled Bethe roots for the ground state are described by second order differential equations, which are multi-parametric generalizations of the Schrödinger equation for the anharmonic oscillator.</p></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0550321324001901/pdfft?md5=372390a053136699f504a8cd5d5a4cd6&pid=1-s2.0-S0550321324001901-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324001901\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324001901","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对于处于临界状态的海森堡 XXZ 自旋 - 12 链,真空贝特根的缩放极限产生了一组无限的数字,它们与量子力学三维非谐振荡器的能谱相吻合。这一奇妙关系的发现,除其他外,还催生了被称为 ODE/IQFT(或 ODE/IM)对应关系的方法。在此,我们考虑海森堡自旋链的多参数广义,它与不均匀六顶点模型相关。当施加准周期边界条件时,可通过贝特安萨特兹技术探索晶格系统。我们认为,对于临界自旋链,在适当制定的缩放极限下,基态的缩放贝特根由二阶微分方程描述,而二阶微分方程是薛定谔方程对非谐振荡器的多参数概括。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scaling limit of the ground state Bethe roots for the inhomogeneous XXZ spin - 12 chain

It is known that for the Heisenberg XXZ spin - 12 chain in the critical regime, the scaling limit of the vacuum Bethe roots yields an infinite set of numbers that coincide with the energy spectrum of the quantum mechanical 3D anharmonic oscillator. The discovery of this curious relation, among others, gave rise to the approach referred to as the ODE/IQFT (or ODE/IM) correspondence. Here we consider a multiparametric generalization of the Heisenberg spin chain, which is associated with the inhomogeneous six-vertex model. When quasi-periodic boundary conditions are imposed the lattice system may be explored within the Bethe Ansatz technique. We argue that for the critical spin chain, with a properly formulated scaling limit, the scaled Bethe roots for the ground state are described by second order differential equations, which are multi-parametric generalizations of the Schrödinger equation for the anharmonic oscillator.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信